AD-A215 768

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIiC
ﬂ% FLECTE

h DEC 2619898 &

Dcs

THESIS

AN AUTONOMOLUS
PLATFORM SIMULATOR (APS)
by
Larry R. Shannon and William A, Teter

june 1989

Thesis Advisor:

Robert B. McGhee

Approved for public release; distribution is unlimited

' rizinal containsd eolar -
p.etwa: ALl 3116 weprodrets
{m= will be u m sl
Wwate'

Unclassified

Sccuritv Classification of this page

REPORT DOCUMENTATION PAGE

la Report Security Classification 1b Restrictive Muarnings
UNCLASSIFIED
2a Securnity Classification Authority 3 Disunbution Avarlubiity of Report
2b Declassification/Downgrading Schedule n Approved for public release: distribution is unlimited.
4 Performing Organizauon Report Number(s) 5 Momoning Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
(If Applicable)

Naval Postgraduate School 52 Naval Postgraduate School
6¢c Address (city, stute, and ZIP code) 7b Address (cuy, state, and ZIP code)

Monterey, CA 93943-5000 Monterev. CA 93943-5000
8a Name of Funding/Sponsoring Organization | 8 Office Symbol 9 Procurement Instrument ldenufication Number

(If Applicable)
8c Address (ciry, state, and ZIP code) 1O S 2N\ o o
Program [i Task No I\f\urx Uit Accession No

11 Tude (Include Security Classijication)

AN AUTONOMOUS PLATFORM SIMULATOR (APS)

12 Personal Author(s) o
Larry R. Shannon and William A, Teter

13a Type ol Report 13b Time Covered 14 Date of Report vyear, monih dusy 15 Page Count
Master's Thesis From To June 19%9 200

16 Supplementary Notation
The views expressed in this thesis are those of the authors and do not retiect the ofticial policy or position of
the Department of Defense or the C.S. Government.

17 Cosau Codes 18 Subject Terms (continue on reverse i necessary and tdeniiiy by boock numberi

Field | Group Subgroup Moving Plattorm Simulators,”Visual Simulators. Real-Time Graphics,
\ Distributed Processing. Line-of-Sichy, RC;ll-TimC Path Planning

19 ' Abstract (continue on reverse if necessary and 1d niifs by block number Ll A I

The development of an intellizent autonomous vehicle, that can perform high risk missions or operate in
environments 100 hazardous for humans, hus been u long standing quest of the military commurity. The
Autonomous Platform Simulator (APS) uses the flexibility and power of realistic graphical simulation to provide a
low cost testbed for the study of real-time path plenning algorithms and control strategies without the commitment
of resources involved in building a prototype system. It is a bridge between the theoretical study of an abstract Al
path planning problem and applied research, producing concrete performance measurements under realistic
conditions.

APS consists of one or more vehicle simulators, each implemented on a Silicon Graphics IRIS/4D-70GT
graphics workstation. One vehicle simulator is linked with an Al agent path planner, implemented on a pair oa
Symbolics Al workstations using the Automated Reasoning Tool development shell.

System trails demonstrated that APS was able to achive real-time path planning and guidance of a realistically
depicted ground vehicle navigating using digitized data of actual terrain. Communication bottlenecks currently
limit the ability to make direct comparisons ‘between human and machine control, but the system holds promise to
fill the gap as a pre-prototvpe autonomous platform simulator. \

20 Distnbution/Availabtlity of Abstract 21 Abstract Sccumy CIassn[xcauun

@ unclassified/unhmited D same as repon r:} DTIC users UNCLASSIFIED

22a Name of Responsible Individual 22b Telephone flnciude Area code) 22¢ Office Symbol
Prof. Rober B. McGhee (408) 646-2449 Code 52Mz

DD FORM 1473, 84 MAR ¥3 APR edition may be used unul eahausted secutiy classification of this page

All other editions are obsoleie Unclassitied

Approved for public release: distribution is unlimited.

AN AUTONOMOUS
PLATFORM SIMULATOR (APS)

by

Larry Richard Shannon
Captain, United States Marine Corps
B.S.. University of Washington, 1981

and

William Albert Teter
Major, United States Army
MMAS., US Amy Command & General Staff College. 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

June 198Y
, /"
N , i / //,
Authors: - Ry
£ W (& g e ——

Lol TR

- W Llham Mbert Teter

Approved By:

Yo

Mnchaeiq._}é{'dz/ ccond Reader

/ Voooa -
il l) iy 9(’/\ l ,A'}y,‘?;
o

Robert B. McGhee, Chatrman,
Department of Computer Science

¥ T.M

Kneale T. Mars
Dean of Information and Policy Sciences

esis Advisor

ABSTRACT

The development of an intelligent autonomous vehicle that can perform high risk
missions or operate in environments too hazardous for humans has been a long
standing quest of the military community. The Autonomous Platform Simulator
(APS) uses the flexibility and power of realistic graphical simulation to prcvide a low
cost testbed for the study of real-time path planning algorithms and controi strategies
without the commitment of resources involved in building a prototype system. It is a
bridge between the theoretical study of an abstract Al path planning problem and
applied research, producing concrete performance measurements wnder reglictic
conditions.

APS consists of one or more velicle simuiators, each implemented on a Silicon
Graphics IRIS/4D-70GT graphics workstation. One vehicle simulator is linked with
an Al agent path planner, implemented con a pair of Symbolics Al workstations using
the Automated Reasoning Tool development shell.

System trials demonstrated that APS was able to achieve real-time path planning
and guidance of a realistically depicted ground vehicle navigating using digitized data
of actual terrain. Communication bottlenecks currently limit the ability ro make direct
comparisons between human and machine control but the system holds promise to fill

the gap as a pre-prototype autonomous platform simulator.

NTIS enae v
pric e ol
Uavga o N '_~l

Jostee

1l

Accesio For l
- - -~ - - ——— —
|)

TABLE OF CONTENTS

L. INTRODUGCTION L.t st 1
A. PROBLEM STATEMENTcoiiiiiiii e e 1
B. THESIS ORGANIZATION..c.oootiitiiitit et e e e 2
IL. BACKGROUND ..ottt sttt e en 4
A VEHICLE SIMULATORS ..ottt et 4
B AUTONOMOUS VEHICLEScoiiee et 7
C. PATH PLANNING ...ttt 8
D EXPERT SYSTEM SHELLS ..ot 11
E COMMUNICATIONS e 12
F DEVELOPMENT SYSTEM DESCRIPTION ... 13
1. IRIS Graphics System.. oo, 15

a. SGI IRIS/4D-70GT Graphics Workstation
DeSCTIPLION vttt 13
b. SOFWATE L. 13
2. SYMBOLICS L., 14
a. Symbolics 3600 ... 14
b. SOFIWATE Lottt 14
3. N IWOTK oottt ettt 14
[I. METHODOLOGY AND ASSUMPTIONS ... 16
A. DEFINITIONS ..ot et 16
B. VEHICLE SIMULATOR ...t e 16
1. ASSUMPUIONS vttt ettt ettt e 17
2. Coordinate SYSIEIMS .uveviiiiiriiiie ettt 17
3. Platform Rotation Angles ... 18
4, Coordinate System Transformations..........oooovvenioicinincen. 19

iv

IV.

3. Physics of MOUON ..o i 21

a. Fricton and Coasting........ocoocoiniiiiiiiiiice 22

b. Braking...ooooooiii i 24

c. ACCEIRTALION e 24

d. Slope Calculations ..., .. 25

e. Effects of S1OPe...cviiiiiiiii e 26

f. Suspension Oscillation - “Bounce” ... 27

6. Simulation Time Interval ... 29

7 PathiS .o e 30

8. GUIAANCE STAIES . oottt e e 33

9. AUTOPHOL . 35

C. PATH PLANNING . ..ot 36
D. AUTONOMOUS vice MANUAL CONTROL ..o 44
E. COMMUNICATIONS Lo 47
F. PERFORMANCE MEASURES e, S50
SUMMARY Lot 51
SYSTEM DESCRIPTION ..ottt 52
A. TERRAIN DATABASE o 32
B. VEHICLE SIMULATOR ... 53
1. CapabilItIes oo e O3

2. APS ENVITONMENT oottt v e 54

3. Graphics Drawing Cycle .o, 55

4. INPUL ., 55

5. Model Update.......ccooiiiiiiiiiiiiiiine e 57

6. Platform Position and Viewing Parameter Update 58

7. Network Communicationsoovveviiirioniiiie e 59

v

8. SIMUIALION TIME 1oveiieeeeeeeee et 64

9. Simulating Weapon Systems ... 64

10. Module DeSCriprons....ooceeveuevieniniceie e e 69

a. Program Control Flow ... 69

b. Supporting ROULINES ...ouvvviiiiiiiii e, 69

c. Data SIMUCIUTES ...vevviiiiiet et 69

d Turning/Steering Module.......cocoooiiiiiin 69

e Velocity Module e 70

f Bounce Module ..o 70

g Math Module.......ooo 71

h. Path Operations MenU. i 71

i. Path Module ... 72

j. Autopilot Module ..o 73

C. RULE-BASED PATH PLANNER ..., ST PPRRTRRRPRR 73

D. S M A A R Y e 79

V. SIMULATION RESULTS Lot 80
A. VEHICLE SIMULTOR ... e 80

B. PLANNER Lo g1

C. COMBINED SYSTEM Lo 82

VI. SUMMARY AND CONCLUSIONS ..o 84
A. LIMITATIONS e 84

B. AREAS FOR FURTHER STUDY ..ot i 84

C. SUMMARY L.ttt s s 89
APPENDIX A VEHICLE SIMULATOR MODULE DESCRIPTIONS 90
APPENDIX B PATH PLANNER CODE ... 123
APPENDIX C USER INTERFACE ... 167

vi

APPENDIX D DATA COLLECTION FORM ... 186

APPENDIX E KNOWN BUGS .o 187
LIST OF REFERENCESot 189
INTTIAL DISTRIBUTION LIST .ottt 1693

Vi

ACKNOWLEDGEMENTS

We take this opportunity to thank the people who provided assistance or in-
spiration. We thank Professor Robert McGhee for getting us started, keeping us go-
ing, and serving as referee. Bill Breden for providing the code to run Professor
Kwak’s wavefront search program with terrain slope data developed by Dennis Fel-
hoelter. Professor Kwak provided invaluable help with the communications and wave-
front search programs, for which he wrote the original code. Professor Michael Zyda
for letting us follow in his wake as he pushed the leading edge of real-time computer
graphics. Mark Christian for his realistic Cobra helicopter. John Yurchak, a program-
mer’s programmer, for patiently leading us through the labyrinthine world of C and
UNIX. We thank our fellow students, for the daily stimulus of working along side
bright, innovative people, never too enamored of their own projects to stop and lend a
hand.

Ron Ross spent untold hours explaining some of the fine points of path plan-
ning. and terrain representation. For his time, effort. and expertise we are thankful.

We especially thank Albert Wong and the rest of the Technical Support Staff,
Computer Science Department, Naval Postgraduate School for their help in under-
standing the workings of the department computer systems.

Finally, we thank our families for providing support and understanding and

keeping us nurtured with hope.

viil

I. INTRODUCTION

A. PROBLEM STATEMENT

The development of a truly autonomous vehicle is a long sought after goal
[DODSCI83, WEISN&89]. The more autonomy and intelligence such a vehicle has,
the more it can replace humans for the performance of hazardous, strenuous, or repeti-
tive tasks. Research in autonomous vehicles has largely focused on the development
of contol systemns that totally replace human direction and move human interaction to
higher levels of generalization and abstraction. Yet no broad comparison has been
done of the performance of a human operator with varving levels of automuted sup-
port, versus purely autonomous control. The objective of this research is 1o create an
Autonomous Platform Simulator (APS) in order 12 provide a facthity for such compin-
sons. Performance measurements, taken under varvine combinations of human and
Al agent contol over a simulated vehicle navigatng a tactical cross-country route.,
provide the yvardsuck to compare the studied modes of operation.

One of the major tasks that an autonomous vehicle must perform is 1o plan a
path to reach its goal and then navigate along that path. There are manyv algorithms
for calculaiing (planning) an optumal path based on some traversal cost critera
(RICHDGS7 contains an excellent survey of path planning methods]. In the
construction of an autonomous vehicle prototype. one methodology is usuully chosen
and then frozen by the investment in the implementation. Another aim of the APS
system is to provide a means for comparing the performance of path planning
algorithms in a practical setting using real world terrain data. The replacement of an
actual vehicle with a realistic graphical simulation is desirable for this research
because different algorithms, hybrid control configurations, and other teatures can be
studied without the cost of building a physical system, the risk of damage to an actual

vehicle, or the risk of injury to a human driver. For this research effort, the physical

vehicle and its onboard navigation and control systems are simulated on a Silicon
Graphics IRIS/AD-70GT graphics workstation.

T, aie APS system the simulated vehicle navigates along a pre-determined path
tov.ard a known goal. The path is produced by either an Al agent or a human planner
from global terrain data, such as a map. which does not contain the location of obsta-
cles, such as minefields, which may force a deviation from the orniginal path. Various
performance measures are monitored to evaluate different combinations of autonomous
and human control. The AI agent planner is implemented on a dedicated Al worksta-
tion, a Symbolics 3650. The expert system shell used in this study is ART. produced
by Inference Corporation [INFRNCS85].

In developing an autonomous vehicle simulation with selectable modes of vehi-
cle control and path planning, four distinct modes of operation are implemented charac-
rerized by whether a human operator or Al agent is performing the functon. The four
combinations studied are:

1 - Human path planning and a human driver.

2 - Human path planning with an autopilot capable of following the caloulated path.

3 - Path planning by an expert system with a human driver controlling the vehicle
based on received path points.

4 - Total cutonomous (hands-off) control.

The hier:rchy involved in these tasks recognizes another level above the two o
far discussed. that of mission planning, which designates the vehicle's final objective or
goal point of the path. In APS, the output of the mission planning process is considered

a given and 1s always entered by the human commander.

B. THESIS ORGANIZATION
The work done in this thesis breaks down into two major areas: vehicle simula-

tion and path planning. Work done in the vehicle simulation arena was performed by

[o]

Teter. Work done in the path planning aena was performed by Shannon. The commu-
nications work was completed by both authors.

Chapter II contains an overview of previous work done in path planning. communi-
cations, and real-time vehicle simulation that relate to this studv. Chapter I con-
tains a detailed discussion of the development of the algonthms and simulator
software developed during this study. This chapter also covers the simulator vehicle
environment, the characteristics that allow the simulated vehicle to react realistically.
and detailed discussions of path planming algorithms. Chapter IV contains discus-
sions on the final system implementation. Chapter V examines the finul APS system.
Finally, Chapter VI contains the authors’ views regarding the himitations of this study

and possible areas for future research.

II. BACKGROUND

This chapter provides a survev of previous work in graphical vehicle simulators
and path planning with special emphasis on research done at the Naval Postgraduate

School that laid the foundation for the APS project.

A. VEHICLE SIMULATORS

The vehicle simulatcr component of the APS system evolved ou. of an effort to
enhance the Moving Platform Simulator (MPS) [FICHTN&8E], a real-time visual
simulation of the Fiber Optically Guided Missile (FOGM), ground vehicles, and three
dimensional terrain, which was itself the result of a continuing series of real-time
visual simulations of ground, sea, and air platforms constructed by students at the
Naval Postgraduate School [OLIVER&87. SMITHD&S7., MOCNKLE&SR,
WINN&S9].

APS was first inijplemented using the Firing Platforrn Simwlator. FPS, a close
cousin of MPS. FPS was a class project which added multiple independent views and
ground vehicles that could engage each other with weapons systems. Since MPS is
the direct ancestor of both APS and FPS, its description provides an understanding of

the context upon which the vehicle simulator was built.

1. The Moving Platfsrm Simulator

The Moving Platform Simulator [FICHTN&S88] was deve'oped at the Na-
val Postgraduate Schoul on a Silicon Graphics, Inc. IRIS 4D/70-GT graphics worksta-
tion. MPS allows a user to select a view from either a ground vehicle or FOGM
mussile and guide the platform over a three-dimensional view of a 10x10 kilometer ar-
ea of Fort Hunter-Liggett, California. The FOGM missile i able to target. track. and
destroy vehicles on the ground. The elevation data for the simulation was provided by
the U. S. Army’s Combat Developments Experimentation Center (CDEC) at Fort

Ord, California. MPS accepts standard digital map data for other areas of the world.

Ground vehicles in MPS are controlled by dials on a peripheral input de-
vice. Control response is immediate. Changes in vehicle course and speed, for exam-
ple, are effective during the next display cycle, making them essentially
instantaneous. The maior portions of MPS adopted unchanged for APS are the dis-
play routines, terrain representaton, window manager interface, FOGM modeling,

and the overall program structure.

2. The Firing Platform Simulator
The Firing Platform Simulator was a class project that enhanced the
ground platform capabilities in MPS by adding a more realistic image of a tank
(Figure 2-1), multiple independent viewing axes. and engagement between ground
vehicle weapon systems. A set of driver’s controls were added using a mouse to let

the user manipulate the throttle, brakes, and steering.

3. Vehicle Motion Modeling

Realistically simulating the response of vehicles to controls. such as
throttle and steering, and to changes in the terrain, is often neglected in a graphical
simulation because a complete model of the physics of motion would be both
analytically complex and computationally expensive. Complete modeling of the
mechanics of vehicle motion is a complex proposal [BARNAC64]. Much of the
modeiing effort of engineers has therefore focused on analyzing a smaller subproblem
such as the characteristics of a vehicle subsystem like the steering or suspension.
Past work at NPS, such as that of Tan [TANBS86], has studied various control
algorithms for an autonomous vehicle following a curving road at constant velocity. In
Tan’s study vehicle mechanics were modeled by numerically integrating second order
equations of motion for an idealized point mass. Numerical integration provides for
accurate answers to vehicle motion equations, but at the cost of extensive
computation. The modeling requirements of APS are both more general and more

constrained: more general in realistically modeling the effects of control inputs and the

5

Figure 2-1 Depiction of M1 Tank

effects of vehicle interaction with varying terrain - more constrained by not being able
to afford an increase in the computational burden from modeling because of the effect
on overall performance.

Real-time graphical moving platform simulations often consume most of
the computing resources of a graphics system in realistically depicting terrain and ve-
hicles [FICHTN&S88: ng 72]. Many graphics researchers shy away from more realis-
tically modeling of the effects of steering and terrain in the belief that the problem is
too hard and the necessary code would be too slow. What is sought for APS is a sim-
plified model of vehicle motion and control response designed for a class of ground
platforms moving off-road across varying terrain. An interesting candidate vehicle
model was developed by Ross at NPS [ROSS89]. Ross’s work provided a thorough
but computationally simple model of vehicle-terrain interaction and energy costs
while traversing varied terrain regions. Unfortunately, his model’s assumption of con-
stant velocity and its requirement for homogeneous terrain patches make it unsuitable
as a basis for the APS vehicle simulator. However, his work has great potential as

an alternate cost function for path planning.

B. AUTONOMOLUS VEHICLES

Research in autonomous vehicles received great impetus in recent vears from
DoD’s Strategic Computing Initiative [DODSCI83] which called for a push of
"machine intelligence technology” in applied research. One of its three demonstration
projects is the Autonomous Land Vehicle program. Much of the work generated on
autonomous vehicles has focused on vision systems, local obstacle avoidance, such
as FMC Corporation’s Autonomous Vehicle [NITAO&88], and road following
guidance, such as Martin Marietta’s ALV [LOWRIES85]. Since APS doesn’t have
local obstacles to avoid or roads to follow, such research, while stimulating, lacks
direct applicability. The autonomous vehicle prototypes do, however, provide insight

into the functonal decomposition of the problem of autonomous vehicle navigation and

control. For example, both autonomous vehicles mentioned above separate path
planning from vehicle navigation and control, to the extent of having different
hardware perform those functions.

The most productive source of techniques for modeling vehicle motion and
response turned out to be basic physics texts such as Marion’s Classical Dynamics
[MARION70] or the late Richard Feynman’s Physics Lecture Series [FEYNMNG63].
Robotics applications [FRANKG69] also provide some usable techniques. Starting
then, from the solid ground of physics, albeit with several simplifving assumptions,
the iterative nature of the graphics drawing loop can be used to break vehicle motion
into small enough increments so that all equations of motion can be modeled with
functions of no higher than first order terms and without numeric integration. More on

this topic is presented in Chapter I11.

C. PATH PLANNING

The task of planning a path across a known region has been classified as a
weighted-region problem [RICHBGS87: pg 15]. The weighted-region problem requires
finding the optimal-cost path between two known points given an appropriate area-
cost map. The area-cost map is described as a two dimensional region that is divided
into sub-regions containing a value of traversal for each sub-region. Solving the
weighted-region problem requires searching this two dimensional region. There are
many strategies that can be applied to this problem of path planning. Each strategy
has unique characteristics that determine its suitability. Two areas that have a major

impact on path planning are terrain representation and search methods.

1. Terrain Representation
Natural terrain is generally not discrete nor clearly defined by regular
boundaries. A variety of terrain models are used to depict natural terrain. The choice

of terrain representation affects the choice of the search method used, and conversely

the choice of a particular search method limits the terrain representations that can be
used.
a. Cartesian Grids
Regular geometric grids are used to divide the terrain into small regu-
lar cells that are used to classify some aspect of the terrain. In work done by Felhoe-
lter, [FELHOES8S8: pg 36-37] slope data derived from a DMA source file of Fort
Hunter-Liggett is used to classify each cell of the region. A wavefront search method
can then applied to this type of region representation to find the optimal path between
two points [ROWE&S8S: pg 2].
b. Hierarchical Models
A hierarchical terrain representation. as used by Metea and Tsai
[METEA&S87], is a variation of the Cartesian method used above, and is used to di-
vide terrain into increasingly fine geometric grid cells. The lowest level contains the
highest resolution data. Each cell within a level contains a single number that is asso-
ciated with the cost of traversal. At the lowest level, this number is normally a direct
representation of some aspect of the patch of terrain represented. At each succeeding
level, the values of the cells of the preceding level that are contained in a cell of the
next level are used to calculate the value of that cell.
Alternative forms of hierarchical terrain representation [KUANE4,
ROSS8&9] move away from the Cartesian grid representation. These models group re-
gions from a lower level that have similar representational value into larger regions at
succeeding levels. The salient point of this approach is that hierarchical terrain mod-
els group terrain information from a lower level into larger regions at higher levels.
c. Homogeneous Model
Homogeneous terrain representation [ROSS89] groups contiguous
points, with identical costs of traversal, within an arbitrary convex polygon. The ho-
mogeneous terrain model allows large areas of terrain to be grouped and stored effi-

ciently in the terrain data base. It also removes the directional biases imposed on the

terrain by Cartesian terrain models. This representation is required for certain types
of path planning techniques. One such technique involving Snell’s law uses the princi-

ples of optics to find paths across homogeneous regions| ROWE87, ROWE&88].

2. SEARCH METHODS
The backbone of any path planner is the search algorithm used. The choice
of which search algorithm to use is based on many factors. One key factor already dis-
cussed above is the terrain representation used. The following search methods are
discussed briefly with emphasis on the impact of the choice of terrain model.
a. Wavefront
Wavefront planning needs a terrain model that divides the search ar-
ea into uniformly sized cells, typically Cartesian grid cells, where each cell contains
its cost of traversal. This technique uses a modified breadth first search where ex-
pansion is accomplished according to the cost of traversing a cell instead of simply ex-
panding from one level of cells to another [RICHBGS&7]. Disadvantages to this
approach are as follows:
(1) The terrain is cut up into uniform pieces no matter what the
lay of the land is. This is of concern because the resolution of the search region is a di-
rect reflection of the resolution of the cells that make up the search region.
(2) The wavefront algorithm investigated in this thesis expands
to the 8 neighbors of a square grid cell, causing motion to be restricted to straight
lines, in the vertical, horizontal, and diagonal directions, between a cells.
3) Finally there is a certain amount of waste associated with
the propagation of a wave. The entire wave must be expanded instead of just follow-
ing the most likely path. This same problem of an ever expanding agenda is associat-
ed with a pure breadu first search.
The major advantages of this algorithm are that it is guaranteed to

find the optimal path and it is well understood.

10

b. Depth-First

A depth-first search is used by Goodpasture [GOODPAR7] to pro-
vide motion planning for a computer simulation of an autonomous walking machine.
The depth-first search algorithm is guaranteed to provide a path if one exists. It how-
ever, does not guarantee finding an optimal path. The first path found is the path cho-
sen. The algorithm used simply explcres neighboring nodes tiat have not been
explored or are not obstacles. A node is chosen that is closest to the goal. This strat-
egy is followed until the goal is reacned or the trail ends. If the trail ends, the algo-
rithm backtracks the path, marking the used nodes as obstacles, until it finds an
unevplored node to follow. If an unexplored node is found the search is continued as
before. If the start point is returned to, and no unexplored nodes are available, the
search fails. That is, no path is possible. The depth-first search is best used where
"go” "no-go” terrain features are used.

c. A Star(A*)

The A* search combined with Snell’s law is used to solve long range
path planning problems, where the terrain is divided into homogeneous-cost regions.
Vanations of Snell’s law are vsed to find possible paths to the goal, across the homo-
geneous-cost regions. Then the A* search is performed using evaluation values de-

veloped from the A* search [RICHBGS87].

D. EXPERT SYSTEM SHELLS

Technology has advanced beyond the days of using a general purpose computer
merely to relieve humans of the tedious tasks of redundant mathematical calculations
or the endless searching of records. It is now possible to undertake more complex
tasks with improved accuracy. Specifically, the growing complexity of model
representation combined with a limited understanding of the processes of human
thought and reasoning, have led to the use of logic oriented languages to help

represent rules used in human decision making. Two such logic oriented languages

11

are LISP and Prolog. But these languages require the researcher to be very closely
tied to the machine environment. With these languages, the programmer is directly
involved in the dctailed management of rules and facts. The desire to remove the
burden of rule and fact management has lead in part to the development of expert
system shells.

The use of expert system shells as logical programming environments provides
an arena for the development of computer programs to solve problems otherwise
difficult to formulate. These environments or shells provide such features as backward
chaining, forward chaining, inheritance, and fact and rule management. Backward and
forward chaining control strategies provide one of the critical features of expert
system shells, since these strategies constitute inference engines. The ideal
inference engine allows rules to fire independently of the order with which the
programmer places the rules in the program control structure. Actual inference
engines contained in expert system shells may fall short of this ideal, but such shells
provide a tool that allows programmers to think of rules as independent islands of
action waiting for the ocean of knowledge around them to provide the preconditions for
their firing. The expert systems shells available at the Naval Postgraduate School are

KEE by Intellicorp [INTELS86]. and ART by Inference Corporation [INFRNCS3].

E. COMMUNICATIONS

The real time control of a visual simulation can involve the use of more than one
type of architecture. The ability to transmit and receive control information and
working data between processes implemented with different architectures was
investigated by Barrow [BRARROWSS8]. The medium of communication between the
various architectures was TCP/IP using the Ethernet. The principal forms of
communication investigated were [/O stream and broadcast.

Broadcast datagrams were used by Barrow to communicate between IRIS

workstations. They provided a convenient way to send discrete messages without

connecting hosts or requiring a specific host address. This method of communication
was not supported between UNIX TCP/IP systems and the Symbolics CHAOSNET.,
so si...im communications were used. The package of routines developed supported
messages containing a single character or number with the UNIX side of the

connection required to act as the connection server.
F. DEVELOPMENT SYSTEM DESCRIPTION

1. IRIS Graphics System
a. SGIIRIS/4D-70GT Graphics Workstation Description
The IRIS/4D GT is a line of high performance graphics workstations
with extensive hardware support for graphics modeling that can support the real-time
3D drawing of the large number of polvgons necessary in a realistic vehicle simulator
[ZYDA&S8E]. This system has the following performance characteristics:
+ 10 MIPS cpu (MIPS, Inc. R2000 RISC Processor).
+ 40,000 10 X 10 pixel quadrilaterals per second (lighted & Gouraud shaded).
. + 24-bit Z-buffer.
» Parallel modeling matrix operations.

« Hardware wransformation matrix stack.

b. Software
The following software products were used in the development of the
APS system:

+ SGIC (MIPS) compiler.
+ UNIX system V Operating System with TCP/IP Network extensions.

+ SGI 4Sight™ Window Manager. 4Sight manages screen and /O resources of
the IRIS workstation. It supports graphics clients using the SGI graphics li-
brary as well as programs written for NeWS and XWindows[SGI4UGSS)].
APS runs as a client under the 4Sight server using the graphics library inter-
face for maximum performance. This gives APS the flexibility of running in a
window of arbitrary size and location. The window manager also provides the
popup menu services used extensively by APS. 4Sight also provides a font

13

manager to scale and render text fonts in prompts, legend text and displayed
messages.

2. Symbolics
a. Symbolics 3600
Symbolics 3600 workstaiions were chosen to perform the path plan-
ning tasks of APS. The Symbolics family of symbolic processing machines are de-
signed with a proprietary CPU, which allows these systems to have LISP and other
symbolic programming languages implemented more efficiently and effecuvely than
conventional computers. Much of the efficiency and effectiveness of the Symbolics
workstations is obtained through hardware implementation of some system manage-
ment schemes. Some of the special architecture features used in the Symbolics work-
statons includes: tagged architecture, multiple caches. hardware stack pointers,
pipelined instruction cycies, and parallel processing [SYMBOLSS].
b. Software
The following software products were used in the development of the
path planner for the APS system:

+ Symbolics Operating System, Genera 7.1, provided a consistent background
for the programming environments.

* The Automated Reasoning Tool (ART) by Inference Corporation is the princi-
ple control language for the AI Agent. This rule-based. symbolic programming
language is implemented on Symbolics workstation SYM4.

+ Symbolics Common LISP is used to provide access to existing path planning
search algorithms and communications code.

3. Network

Computer systems in the NPS Computer Science Department are linked

through an Ethernet local area network connecting some 76 stations. Average day-

time traffic is 25 packets/second or 30% peak utilization in worst 20 second period.

Based on a 24-hour test period dunng Jar.uary 1989.

14

The portion of the network used by APS is shown in Figure 2-1. The vehicle simula-

SYMBOLICS

IRISs

1 2 3 4 5 . .
| \ multipont network (nterconnect
O T —

ETHERNET (10 MB/sec)

Figure 2-1 Network Physical Topology

tors (commander and driver) are connected directly to the main Ethernet cable seg-
ment. The Symbolics Al workstations are connected to the network through a
mulitport network interconnect. a Digital Equipment DELNIL. The flow of communica-

tions as seen by APS is shown in Figure 2-2.

RT Client Server)
DD . Vehicle :
Al TCP/IP Stream Simulator | Driver
AGENT ﬁ
. . BROADCAST
HHAOSN
CHAOSNET DATAGRAMLS,
PATH Vehicle
Commander
PLANNER Sumulator

Figure 2-2 Network Logical Topology

III. METHODOLOGY AND ASSUMPTIONS

In this chapter, different candidate methodologies and algorithms are explored
and the rationale behind the ones chosen discussed. The goal is to explain why cer-
tain design decisions were made and how previous work was utilized. Small seg-

ments of code or ART rules are included to show the flow from theory to applicaton.

A. DEFINITIONS

The following terms are defined here either because they are either used in a
non-standard manner or are key to the concepts presented in this thesis.

Slope Angle - The magnitude (absolute value) of the angle between the planar
terrain polvgon and the horizontal plane.

Local Platform - A platform added at the driver's vehicle simulator.

Net Platform - A platform added at a remote vehicle simulator and updated
over the networh. 1If a network platform is selected to operate, oniy the viewing
controls are active. Othe: vehicle parameters are controlied by its home simulator.

NOGO Terrain - Terrain classified as having a rafficability of zero.

Path - A list of twe or more terrain points. The first point on the path iy i
start. the last point is 1ts goal.

Terrain Polygon - Planar polvgon having uniform slope. In APS these ure
triangles. one halt of a terrain gnd defined by the four elevanons at the vertices,

Trafficability - The relative speed at which a vehicle can raverse 2 diass of
terrain due to roughness. obstacie density. soil conditions, etc. In APS tratficability 15

purely a function of the magnitude of the slope angle.

B. VEHICLE SIMULATOR
The vehicle simulator portion of APS provides for a realistic depiction of a tacti-

cal platform, its control response, and its interaction with tie terrain in a graphical

simulation without the overhead of completely modeling the full suite of nme consum-

ing and complex physical motion and dynamics.

1. Assumptions
The vehicles and terrain simulated in this study are assumed to have the
following characteristics:

» Tracked or wheeled tactical vehicle travelling offroad, capable of traversing
60% slope.

« Trafficability of slope limits vehicle speed before stability limit is reached.
» Trafficability of slope limits vehicle speed before engine power.
» Single gear ratio modeled. (Although different gears could be modeled by us-

ing an array of time constants).
2. Coordinate Systems

The SGI graphics software library uses a three-dimensional (3D graphics
world coordinate system (Figure 3-1) in which the Z axis represents depth, distarce
from a plane perpendicular to the eve. rather than altitude or elevation. Another coor-
dinate system is used when planning a route across terrain, corresponding o a4 two-
dimensional (2D) view of the terrain from directly above. This is the Universal Trans-
verse Mercator Projecton. (UTM) coordinate svstem and is used for path planming,
as in a military map. and is the coordinate svstem used for the terrain database. In

the UTM system each point is represented by a Grid Zone Destgnator. a divance oo

from Grid Zone origin (an easting). The UTM coordinates of a point ex.v.z0 dedned in
the graphics warld coordinate system can be found by:

utm_x= x+(x_grid*10.0);
utm_y=-z+(y_grid*10.0);

17

Y(ELEVATION)

A / -Z (NORTH)
, APS objects

drawn 1n this
area

Figure 3-1 Graphics World Coordinate System

3. Platform Rotation Angles

In order to model moving objects, a convention must be established for the
rotation of the body (platform) axes in relation to the graphics world axes. Normally
a platform’s direction or heading is given as counterclockwise degrees from North.
Weapon systems such as artillery pieces are also aimed or “laid" using an azimuth.
an angle that follows the same convention for direction but a uses a different unit of
angular mzasure, mils (milliradians). The SGI graphics system and APS follow a dif-
ferent convention. Rotation angles are measured as counterclockwise angles from the
positive axis. Thus a vehicle heading due North would have an azimurh (rotation
about the world Y axis) of 1.57 radians or 90 degrees'. Other rotation angles follow
normal right-hand rule conventions except in the case of roll. With body axes as-

signed as in Figure 3-2, the following conventions are established for APS:

1Graphlcs pruniuves use degrees but the C library functions use radians. All angles in APS are stored as radians and converted as

necessary.

18

azimuth - Rotation about the Y-axis is in the right-hand sense, from the
positive X-axis, Counterclockwise as an observer looks ~long the
positive Y-axis toward the origin. Also called platform’s course or
orientation.

pitch - Rotation about the Z-axis is in the right-hand sense. from the
positive the X-axis, Counterclockwise as an observer looks along the
positive Z-axis toward the origin. Angle between ground (X-Z) plane
and body X-axis.

roll - Rotation about the X-axis is opposite to the right-hand sense from
the positive Z-axis. Here the rotation is Clockwise as an observer
looks along the positive X-axis toward the origin.

heading - Compass course is a Clockwise angle in degrees between
north (world minus Z-axis) and vehicle X-axis. Not used internally in
the model, but it is used to display platfo m azimuth to the user.

Body Y
"World Y

_ Body X
World Z_~" World X

Body Z

is, there is a requirement to fransform points between coordinate systems.

Figure 3-2 Body vs World Rotation Axes

Coordinate System Transformations

Since the user’s viewpoint is fixed with respect to the vehicle or body axis,

and the graphics software requires such points in terms of its own world unrotated ax-

tion of a coordinate in a rotating coordinate system with respect to a fixed or reference

coordinate system can be represented by a 3 X 3 rotation matrix Mg ¢ The rotation

19

The posi-

angles are known as "Euler” angles. The rotation matrix representing rotations about
Euler angles, called yaw (y), pitch (8), and roll (¢), in that order is:
Mot =Rz, ot Ry, pich Ry, yaw [FU&87:pg 25] =

cosycos® cosysinOsing - sinycosd cosysinBcosd + sinysind
sinycosB sinysinBsing + cosycosd sinysinBcosy - cosBsino (3-1)
-sinB cosBsind cosBcosd

The transformation of a three dimensional vector representing the body off-

set to the fixed reference is achieved by pre-multiplying’ Mp ot by the vector or:

Py, = PgM

.
w ROT (3-2)

This transformation requires the following operations:

3 sin function calls

3 cos function calls

16+9 floating point multiplications
4+6 floating point add/subtract

Fortunately the overhead of these operations can be avoided by soiving a
more general problem that includes translation and scaling during the transformation.
Such a transformation from body to world coordinates is normally done by means of a
4 X 4 homogenous transformation matrix. This matrix represents the location of a ro-

tated and/or translated coordinate system (body), with respect *~ a fixed coordinate

A A A
system (world). Symbolically then, the transformation is Py, = Pp M where P

ROT

represents the 4 X 1 homogenous coordinate vector.

The geometry engine of the IRIS is designed to perform these tvpe of

transformations using 4 X 4 matrix operations efficiently. The world coordinates of

1.\'otc that 1in graphics a body offset is transformed to where it would appear in world coordinates so the rotauon matnx is pre-mul-
uplied by the posiuon vector. In robotics where objects actually move the rotauon matnx 15 post-multiphed by the position vector

20

the eye position vector, for example, can be calculated by having the IRIS hardware
perform rotations as if the body were an object about to be drawn and pre-multiplying
the rotation sub-matrix of the result by the offset vector. The result is the world coor-
dinate offset position. Figure 3-3 is an extract of transform_body_to_world that per-

forms these operations using the IRIS hardware.

/* Do rotations in reverse gimbal order */

rotate((Angle)(azimuth*RTOD_X_10), 'Y’); /* azimuth */

rotate((Angle)(elevation*RTOD_X_10),°Z’); /* pitch */

rotate((Angle)(-roll*RTOD_X_10), *X); /*roll*/

getmatrix(offset_mx); /* Get accumulated rotation matrix */

*eye_x = dx*offset_mx[0}{0] + dy*offset_mx{1]{0] + dz*offset_mx{2}{0];
*eye_y = dx*offset_mx([0]{1] + dy*offset_mx{1]{1] + dz*offset_mx[2][1];
*eve_z = dx*offset_mx[0][2] + dy*offset_mx[1][2] + dz*offset_mx[2][{2];

Figure 3-3 Transforming Body Offsets to World Coordinates

5. Physics of Motion

Vehicle motion and control response is modeled as changes in the vehicles
velocity vector v, with changes in its magnitude being acceleration or braking, and
changes in its direction being steering. The model treats control inputs as changes to
the normal constant velocity equilibrium state on level ground. The vehicle engine, at
a particular throttle setting, provides sufficient force to overcome all resistance forces
and maintain a certain speed corresponding to equilibrium between propelling and
resistance forces. If the propelling force is increased then the vehicle will accelerate
up to a new equilibrium velocity. If throttle is decreased then it will "coast” down to a

new equilibrium velocity. The vehicle velocity corresponding to maximum throttle is a

program constant, MAX_GNDSPEED = 45 MPH.'. Braking is modeled as

1[n APS there is one set of model constants. All types of vehicles react and “feel” the same 10 the driver. A jeep accelerates
no faster than s tank. However, these constants could fairly easily be expanded to an armay of constants indexed by vehicle
type

deceleration at a variable but velocity independent rate. Steering response is
modeled as an exponential function of time.

a. Friction and Coasting

A vehicle of mass m, and velocity vector v, travelling on a level sur-

face, has momentum m¥. At equilibrium, the only forces opposing motion are frictional

resistance forces, F R Frictional rolling resistance is largely fluid friction and comes

from air resistance, lubricant fluid resistance in bearings and gears, tire deformation

while rotating, soil deformation, etc. For each resistance force

Fg =-km" W (3-3)

Different resistance forces have different exponents for v. For exam-
ple, for air resistance at low speeds (< 24 meters/sec), n = 1 [MARION70: pg 53].
In fact for all resistance forces at the range of speeds dealt with in this study, n <1 is
assumed. For simplicity a convenient approximation is made that the force contribu-
tion from all sources of resistance can be combined into one resistance force with n =
1, with some combined constant k.

Looking at just at the magnitude of the resistance force and remem-
bering that it is always opposite the direction of motion, (3-3) becomes:

Fp = ma = mdv/dr = -kmv (3-H

Eliminating constant mass and integrating over time this becomes:

[avmw = x [(3-5)
which has a solution of the form:

Inv=-ki+C (3-6)
Using the initial condition v(1=0) = v means C = In v_. Taking the exponential of both
sides gives:

elnv —e (-kt + ano) (3_7)

(3]
to

v=e -kr e Invo (3'8)

v=v e’ (3-9;
(]

Lett=1/k. Thenv =1y e kt - v,' l/e=v/2.718. The quantity 1/k is called a time
constant and corresponds to the time it takes the velocity to decrease to = one third of

its original value. This time constant, 7, can therefore be used to calculate an average

rate of change per unit time or:

v=v -(v -di/t) (3-10)
Note that this equation depends only on the time interval and velocity at the begin-
ning of the time interval. It also avoids calculaiing the exponential function. The con-
stant T controls how quickly the vehicle coasts to a stop or lower equilibrium speed.
A large value of t corresponds to a streamlined, wheeled vehicle on hard pavement,

as opposed to a small value of T which might represent a track laying vehicle in mud-
dy soil. The coasting function (3-10) is coded as: coast_vel = currvel - (currvel /
COASTING_TIMECONSTANT * elapsedsec);.

An analysis of a typical case shows how well this code fragment pro-
duces the same result as equation (3-9). For COASTING_TIMECONSTANT = 10.0.
elapsedsec = 0.5, and currvel = 40 MPH, after 10 seconds elapsed time, (3-9) yields
14.72 MPH while the code produces 14.34 MPH. In APS the final velocity for coasting
need not be zero. It could be a lower equilibrium velocity. The exponential nature of
the decrease in velocity means that the new velocity would be approached asymptoti-
cally, never actually reaching the target velocity (variable cmdvel). Therefore there is
a cutoff in the procedure velocity_model, to wit:

1f (tabs(cmdvel - currvel) <« TO_MPS) return(cmdvel);

This retumns the selected velocity as the current velocity if it is already within 1 MPH.

b. Braking
Deceleration due to braking can be modeled as a variable resistance
force that is independent of velocity. For a braking factor b, 0.0<b6<1.0,

an,uu::ma:’"de/d’=‘kBRAKEmb (3-11)

Eliminating constant mass and rearranging, the new velocity is given by:
v=v +dv=v_+ (-kgpagg b dr) (3-12)
or, in code:
newvel = currvel + (MAX_DECELERATION * brake_factor * elapsedsec);
where MAX_DECELERATION is a constant representing the maximum rate of deceler-
ation before skidding (shear force between vehicle and ground > frictional force) and
brake_factor represents the input to the model from the vehicle controls, a value of 0.0
representing no braking down to -1.0 or 100% braking. This control input can come
from dials, the mouse or be calculated by an autopilot.
c. Acceleration
Acceleration corresponds to advancing the throttle position to a new

velocity position, v, causing engine output to exceed the propelling force necessary to

overcome the current rolling resistance. It assumes linear engine power output. Sub-

tracting equilibrium forces at the current velocity, v_, gives:

FA =mdw‘dr=kA(Ve v,)m 13-13)
dv:kA(Vo- V) dt (3-14)
dv=1/t(vy- v) dt (3-15)

Where 7T is again a time constant = 1 /k,. Equation (3-15) is implemented as:

newvel = currvel + ((cmdvel - currvel) * dt /| ACCELERATION_TIMECONSTANT;
For ACCELERATION_TIMECONSTANT = 10 seconds and cmdvel = 40 MPH, this

gives:

0 = 20 MPH in 6 seconds

0 = 30 MPH in 11 seconds
0 = 40 MPH in 21 seconds

This compares well with the nominal acceleration for the US M1 Tank of 0 = 20
MPH in 7 seconds [JANESS87: pg 122].
d. Slope Calculations
Elevation is a function of UTM coordinates, A(x.v). The gradient of A
is a vector in the ground (X-Z) plane that points in the direction of greatest increase

of altitude.
r
Vh=| dy/ox, oy/o: (3-16)

This model is not so concerned with the direction of the gradient vector as with 1its

magnitude and the magnitude of the slope angle w, which is the angle between a tan-

gent to the elevation tunction and the X-Z plane.

y, =tanl | (3y/ax P+ (av/0: P (3-17)

Fortunately. it is not necessary to calculate the slope angle directly. It can be calculat-

ed from the terrain polvgon patch surface normal unit vector N which is already avail-
able for each terrain polygon from the lighting model calculations. Call vy the angle
between N and the X-Z plane, which is also the map ground plane. Since N, with
COmMPpONENLS Xy, Yy, Zy. 1S perpendicular to the terrain polygon, | Wy | + | Yy | =n/

2. Now YN = tan°! (y !/ (xy+zy)'1/2 Y, and since tan(w/ 2 — 0) = cot(8) and
tan(8) =1/ cot(6), then

\U,,=tan'l((xy+zx)'l/2/yx) (3-18)

In the vehicle simulator, this result 1s produced by the function

convert_normal_to_slope which returns L7 in radians.

If the surface normal of the terrain polygon is not readily available
(perhaps because vertex normals are being used), the effective slope of the vehicle
can be calculated from its pitch and roll. These body angles are used to calculate the
world coordinates of a body normal, a normal vector which points out the roof of the

vehicle, using another math function transform_body_to_world, shown in Figure 3-4.

float normai[3], siope;

transform_body_to_world(platform->cse,
platform->base_pitch,
platform->base_roll,
0.0, 1.0, 0.0,
&normal[0j,
&normal[1],
&normal{2]);

slope = convert_normal_to_slope(normal);

Figure 3-4 Calculating Effective Slope Using Platform Orientation

Finally, vehicle pitch alone can be used as effective slope to limit
speed. since, stability factors aside, pitch angle is the slope resistance the engine
must overcome.

e. Effects of Slope

Instead of directly modeling the effect of acceleration forces on a vehi-
cle due to gravity when travelling on sloping terrain, the model assumes that the rraf-
ficability of sloping terrain limits vehicle speed before engine power would be
insufficient to maintain a set speed. Maximum vehicle speed is limited by a slope

governor that decreases maximum speed as a function of slope. This slope governor

function is shown in Figure 3-5 where MAX_GNDSPEED is the maximum speed a

Speed (MPH)
MAX_GNDSPEED

M'N_MANEUVER_SPEED ..

P

0° 27° Slope (degrees)

Figure 3-5 Slope Governor Function

vehicle can achieve on level ground and MAXSLOPE (27°) is the maximum slope tra-
versable by the vehicle. Since limited speed could go to zero in untrafficable terrain,
the vehicle wvould be stuck. unmovable, if it ever entered a NOGO terrain patch. A
low "maneuver”" speed is allowed for the driver to carefully and slowly work his way
out of such a situation.

f Suspension Oscillation - “Bounce”

When a vehicle crosses ¢ bump or other change in terrain sivpe, 1
induces an oscillation in the spring-mass suspension system. This oscillation
continues until it is damped by the shock absorbers and friction of the vchicle
suspension moving parts. This motion can be quite difficult to model due to the
complex geometry of a vehicle suspension system. However, by limiting oscillations
to changes in vehicle pitch angle only, this motion is easilv modeled as simple
damped harmonic oscillation along a single axis (the vehicle pitch angle) as shown in

Figure 3-6. This transient pitch is then added to the base vehicle pitch caused by the

slope of the terrain. Two additional fields in the vehicle data structure are created to

handle this effect, bounce_amplitude and bounce_time.

Pitch Amplitude

/
2N 7~

dPTch < J <
TIME

Transient Pitch Offset

Figure 3-6 Damped “Bounce” Oscillations

The equation for damped harmonic motion [MARION70 :pg 371] is:
y=y, eP cos(Wt +3) (3-19)
amplitude oscillation
where B = b / 2m, b is the damping force, m is the mass of the vehicle, and w_ is the
frequency of undamped oscillations of the system. Assume w, = . Choose a time

constant T, which is equal to the time interval when amplitude of the osciliations has

decreased to 1 / e of its original value, which is T = 2m / b. Equation (3-19) can then
be written as:

y=1y,-(y, *dr/t)] * cos(wpt) (3-20)
If the displacement y is the suspension travel at the front wheels then 8 =

tan'l(y / wheelbase). For relatively small displacements, the damped harmonic oscil-

lations can be calculated directly using the pitch angle 6 and (3-20) becomes:

28

8 =[6,-(6, *dr/t)]*cos(wyt) (3-21)
This can be broken up into two code steps for each cycle of the update loop:
1) Calculate the current angular oscillation value.
bounce_pitch = bounce_amplitude *
cos{ OSCILLATION_FREQUENCY * TWOPI * total_time);
2) Calculate new bounce amplitude based on damping effect.

bounce_amplitude = bounce_amplitude -

{ bounce_amplitude * dt / DAMPING_TIMECONSTANT);
With DAMPING_TIMECONSTANT setto(1-1/e)/t.

Empirically, equation (3-21) and its code can be shown to approxi-
mate the results of (3-19). Considering a typical case! and comparing just the de-
cline in amplitude after 3.0 seconds, equation (3-21) vields 5.3° (converted from y
displacement), while the code gives 4.8°. Only a small part of this difference (app
0.1°) comes from osc. 1ting the pitch angle directly instead of oscillating the displace-
ment and then converting, 5.5° versus 5.6°. The total error is small enough that

“tuning” the constants can bound this error well within the difference detectable in a

moving visual simulation.

6. Simulation Time Interval

The model time interval. or dtf, using Leibnitz notation. is the elapsed time
required to complete one processing loop in simulation time. Since the rates of
change of most of the processes are non-linear, the linear approximation used is only
a good approximation if dtf is small, « 1 second. The second problem that results if dt
is not small enough comes from delayed control feedback. For example, if steering a
vehicle in a turn and dt is of the order of 1 second then the driver will tend to over-
shoot control corrections, making it difficult to steer onto a desired course or avoid ob-

stacles. This lower bound is due to control response and depends on many factors,

Teor DAMPING_CONSTANT = 20, dt = 0.25 seconds, wheelbase = 2.0 meters, initial displacement of € meters = 1€ degrees. and
totai ume = 1 0 seconds

inciuding platform velocity, control responsiveness, complexity of maneuvers, etc. Re-
sponsiveness for an aircraft travelling at hundreds of MPH must be greater than for a
ground tactical vehicle travelling cross country at speeds typically < 25 MPH. For
such ground vehicles, a subjective lower bound appears to be 3-4 frames or cycles per

second.

7. Paths

Paths in APS resemble the military concept of a "route” with an SP (Start
Point), RP (Release Point) or goal, and a CP (Check Point) at turning points or criti-
cal points. Figure 3-7 shows the path data structure. The SP of the path is its first
point and the RP is the last point on the path. Each platform data structure
(Appendix A) contains a pointer to a path and a pointer to the next point along the
path. Path manipulation routines are contained in module path.c.

Paths are created and maintained separately from platforms. When a vehi-
cle is "assigned" a path to traverse, a copy of the path is made for the platform and a
pointer to the platform is added to the list of platforms assigned to that path. Thus
several platforms can be assigned to traverse a path and navigate along it indepen-
dently. Also, if a point on the onginal path is altered. all affected platforms can be no-
tified. On the other hand, if a platform must deviate from the path to avoid an
obstacle, interrnediate points can be inserted in the platform’s copy of the path with-

out affecting the original.

30

Utm_point

double x double v

PTNGCDE
Utm_point point

nextpt = PTNODE

PATH

int pathid

char[80] name

int numpts

platforms — PLATFORM_NODE

ptlist - PTNODE

lastpt > PTNODE

nextpath - PATH

Figure 3-7 Path Format

A platform being guided by an external agent by receiving one point i@t a
time is actually following a path that consists solely of a periodically updiated goal.
As new guide points are received, the goal point is replaced. The autopilot module
can then navigate a platform along a path by heading successively toward cach point
on the path list. Figure 3-8 shows a tank approaching the goal point. which is drawn
as a tall, pyramid marker on the terrain. The paths are maintained as a linked list
managed using four global variables:

pathlist - pointer to first path on path list.

pathlistend - pointer to last path on path list.

18

Figure 3-8 Driving a Tank Toward Its Goal

32

numpaths - number of paths currently on pathlist.

path_pickid - unique identifier for graphics picking.

Path manipulation is accomplished by selecting the "PATH OPERA*.-
TIONS" entry in the main menu. The path operations menu is then constructed and

displayed, providing for the selection of up to four functions:

1 - Display Paths - ON/OFF
2 - Construct a Path
3 - Delete a Path

4 - Assign Vehicle to a Path
The first option toggles the display of paths on the 2D terrain map. Figure 3-9 shows
the display used to manipulate paths. Paths are displayed by default but may be
turned off to reduce screen clutter. Menu option 3 is only presented if there 1s at least
one path defined. Option 4 is only presented under the additional condiuen that at
least one platform is defined. At present, all platforms except FOGM can be as-
signed to a path. A path, once defined, is stored in a file containing all currently de-
fined paths. When APS is started, it searches for a file "aps_paths.dat” in the
following directories, in order: the current (default) directory, the directory containing
the APS executable, and the "DTED" directory. If the file is found. APS loads the
paths it contains. Each time a path on the path list is created or destroyed. the file is

updated.

8. Guidance States
The current control state of each platform is reflected by the combination of
two fields in each platform record:
control - MANUAL or AUTOPILOT
ext_guidance - ON or OFF
The slot ext_guidance determines whether platform guide points are taken from in-

coming message or an assigned path. The slot control determines whether course

(98]
99

o
At

vvvvv

Figure 3-9 Terrain Map Used for Path Planning

commands are calculated by the autopilot or are provided from the vehicle controls

(dials or the mouse joystick).

9. Autopilot

The autopilot determines the commanded course and speed for each local
platform that has its control field set to AUTOPILOT and has a path defined. Since
external guidance messages update the platform’s local path record, the autopilot
functions irrespective of the source of the path data. The autopilot calculates an azi-
muth to the current guide point. The current guide point is automatically updated to
its successor on the path (if there is one) when the platform is within VICINITY
meters of the way point. If the platform gets within ARRIVED_DISTANCE of the
guide point then the guide point must be the last point on the path, i.e. the path goal.
If so then the autopilot applies the brakes to bring the platform to a halt without over-

running the goal. Figure 3-10 shows the relationship of these distances. Precise

< VICINITY

ARRIVED
DISTANCE

Figure 3-10 Autopilot Control

control would require both these distances be variables that are a function of the plat-
form’s speed, instead of constants, so that a platform starts to brake or turn in the
time necessary to stop or turn exactly over the guide point. This level of precision
would be necessary to navigate a platform through a field of obstacles and would re-

quire projecting ahead the platform’s location so as to issue the proper commands at

35

the correct time. However, the simpler algorithm presently used is adequate to halt a
platform travelling at maximum ground speed (MAX_GNDSPEED) before reaching
the goal.

B. PATH PLANNING

1. Introduction
The path planning process for this study simulates the actions of the vehi-
cle commander in planning paths, and issuing waypoints for a controlled vehicle. The
commander starts out with the following facts:

* Which vehicle is being controlled.

» Start point and goal locations are known.

* A terrain map of the region to be traversed is available.

» The terrain map contains cost of traversal information for the region.
* Vehicle speed.

* Vehicle course.

* Vehicle guidance mode.

* Vehicle location in UTM coordinates.

» Current simulation time.

The commander uses this information to plan a path to the goal, selecting
the quickest path between the start point and the goal point. In selecting a path, the
commander chooses prominent terrain feallres as guiding waypoints for the driver.
Once the path is selected, the commander issues commands to the driver to proceed
to the first waypoint as indicated by the commander. The commander continues to is-
sue new waypoints as the driver pilots the vehicle close to the last waypoint. As the
simulation continues, the commander needs to be informed of changes to the vehicles
status as indicated here.

* Vehicle ID.

* Vehicle speed.

* Vehicle course.

* Vehicle guidance mode.

36

* Vehicle location in UTM coordinates.

» Current waypoint location in UTM coordinates.

2. Path Planner Control Program

The path planning simulation of the commander is divided into two major
areas, the overall controlling program and the actual search algorithm that does the
path planning. The term path planner is used to describe the combined Al processes
that make up the AI simulation of the path planning commander. The path planner is
kept separate from the graphics simulation of the vehicle and implemented on the
Symbolics Al workstations. Two reasons for this are: first, a great deal of path plan-
ning work done at the Naval Postgraduate School is done using AI workstations, and
second, a substantial amount of the program code produced is done in LISP and Pro-
log that can be easily ported between the different Al workstations.

The path planner control program is separated from the actual search por-
tion of the path planner for three reasons. The first is to allow modularization of the
code. The communication costs associated with this approach do not appear to over-
ride the benefits of being able to substitute different search algorithms. The second
reason for the separation was to allow the path planner control program the exclusive
use of a workstation. Expert system shells require considerable svstem resources.
and it is felt that the overhead of running the expert system shell would put an exces-
sive load on a single workstation when combined with running real time path planning
searches. Finally, this separation should allow more than one search program to
work simultaneously.

a. The Expert System Shell

High turnover and short leamning curves predominate much of the frus-
tration associated with thesis work. Therefore, since one of the major goals in this
study was to provide a test platform that could be used to study the relationships as-
sociated with the application of artificial intelligence techniques to the control of au-

tonomous vehicles, it would be advantageous to have the path planner controller

37

written in a high level symbolic programming language. The use of such a language al-

lows a researcher to examine problems at 2 much higher level of abstraction than with
LISP or Prolog.

One of the criteria in the selection of an expert system shell was the
desire to have the path planner control program continuously monitor the knowledge
database and react to changes therein. Forward chaining control strategies facilitate
this continuous riow within the rule based sysiem by simply keeping fresh facts as-
serted. In ART and KEE, the forward chaining mechanism is self contained in the in-
ference engine of the shell. There are forward chaining control implementations
written for both LISP [MCNKLE&88] and Prolog [ROWESS], but abstracting the re-
searcher away from the mechanics of forward chaining produces code which is easier
to understand.

ART was chosen over KEE in part because it appeared easier to ex-
amine the workings of the rules in ART. ART allows direct manipulation of the rules
through Symbolics® ZMACS editor, and through the use of ART'’s ability to watch and
record the firing of rules, and the assertion and retraction of facts.

b. How ART Works as a Process Controller

ART is a rule-based, expert system shell, containing the ability to
forward chain and backward chain. The principle inference engine is the forward chain-
er. As stated in Chapter II, an ideal inference engine within a shell would provide an
uncluttered view of the rules and knowledge base used in a problem. In reality. there
are inherent limits on the inference engine implemented within ART. One important
limit is that an artificial structure and order are imposed on rule firing. A simple exam-
ple of this is the difference between the firing of two rules that require identical pre-
conditions. One rule must fire first. The engine must decide. The choice could be as
simple as choose the rule that appears first in the program structure, or choose the
shortest rule. And though the choice may be arbitrary it must be consistent. ART ap-

pears to choose the first rule in the program structure.

38

(1) Rule Structure. ART’s rule structure provides a straightforward
way of declaring the complete predicate logic for a given rule. A sample rule extracted
from the path planner control program is presented in Figure 3-11 below. The left side
of the rule contains the preconditions necessary for the rule to fire. The right side of the
rule carries out actions. These actions can be controlled by binding temporary facts and
by examining states through the use of conditional statements. The parts of the rule
are clearly shown in Figure 3-11. Herec the rule is fired when the fact (menu one) is

asserted. The right side of the rule can request the operator to perform some action

(detrule MENU1
{schema sym
(one ?s1)
(two ?s2)
(three ?s3))
?a <- (menu one)
=>
(printout t t "Where is the path planner located?”)
(printout tt "Your choices are the following. chose one by it's letter. *
ta“® ?s1
t°b " ?s2
t°c " 7s3
t "NOTE-—Please ensure that the path planning software is running®
t)
{bind ?b (read))
(if (or (eq ?b 'a)
(eq ?B'A))
then
(assert (sym-link ?s1)
(menu two)
else
{retract ?a)
{assert (menu one)))}
)
(retract ?a)
)

Figure 3-11 MENUI1 Code Fragment

such as choose the Symbolics machine where the search control program resides. The
operator’s response is then checked to ensure a valid response, and facts are asserted

that enable the Symbolics communications start up rule to fire and start

communications with the appropriate Symbolics workstation. Of special note here is
that a fact in ART must be retracted before it is reasserted. If the fact is asserted
before it is retracted, the assertion will be lost. Thic is because ART keeps only one
copy of identical facts. The Path Planner Control Program containcd in Appendix B
provides a more detailed look at the code.

(2) Continuous Forward Chaining. A rule firing control mechanism is
needea chat aliows the path planner control program (0 continuously monitor the
knowledge base and the communications sub-process. This is accomplished with
continuous forward chaining by cycling through a base set of rules. The rules chosen
for this cycling are the interface with the vehicle clock and the calls to the system’s
communications ports. These rules are selected because they are the most likely
routes for new facts to enter the knowledge base of the commander. The Symbolics
read-char-no-hang stream read method is used in the communications rules to ensure
that the communications calls do not wait if there is no data on the lines. Rule cycling
begins when a rule has met all of its enabling preconditions. A rule fires when all of
its enabling facts are met. The rule check-comm-links-Iris retracts its enabling fact,
and asserts the facts (check-comm Iris), (check-comm sym), and (clock-update yes).
Order of assertion is important here because the last fact asserted will be pursued
first, as explained in Paragraph c. below. If no informaiion is available from the IRIS
communications link, the clock is updated, the Symbolics’ communications link is
checked, and finally ART cycles back through the checking of the IRIS
communications link.

(3) Rule Precedence. Actions by a human commander are taken
according to some precedence or order imposed by the commander’s judgement. It is
desired to duplicate the human’s ability to judge and separate actions that need to
happen immediately from those that could be postponed. Assigning rules an orde: of
precedence allows more important rules to be examined first. Rule precedence is

accomplished by the use of ART’s salience function. Salience values are from -10000

40

(lowest precedence) to 10000 (highest precedence). A rules salience value is
assigned at compile time. If the rule’s salience is not declared, a value of 0 is
assigned. Rules of the same salience are loaded onto a stack as they become ready to
fire. Rules thus grouped are fired according to their salience value first, then
according to their position on the stack. It is useful to think of ART as having a
separate stack for each salience value, and always firing rules off the stake with the
Highest salicice vaiuc. Al cachi 1evel (T precedaice, the rule loaded to the stack last
is fired first. This provides a mechanism to mimic the human ability to pursue what
should be done first. Rules must be written such that more important things have
higher saliences than less important things. The consequences of this stack action
effectively imposes a most recent fact following aigorithm. A side effect of a most
recent fact following algorithm is that it can lead to indefinite postponement of rules.
This can happen in two different ways. First, if high precedence rules are coatinually
added to the agenda stacks, low precedence rules will never fire. A second and more
subtle way a rule couiu L ird~finitelv postponed is by asserting a fact that activates
a rule of the same precedence as the postponed rule. Since all newly assertzd rules
are loaded to a stack, the most recent rule is looked at first, thus postponing the older
rule. This indefinite postponement is easily handled in Prolog by using an assertz
command. Using ART, the programmer must control rule firing by sequentially
activating rules, and ensuring that all sequences of rule firings lead back to the lowest
level.

(4) LISP Calls. LISP calls are used where it is more convenient to
perform an action on LISP data structures or to use existing LISP functions. LISP
calls can be made only on the right hand side of rules, and are delineated by #L
immediately before the LISP code. ART can make direct use of LISP symbols and
values, but is clumsy at manipulating LISP lists. Therefore, LISP lists are converted
to ART facts and schemas that use relations within ART to link related facts. An

example of this, in Appendix B, is the rule process-waypoints. In this rule, the

41

incoming waypoints are stored with the vehicle and their sequence number from the
list they came from. ART also fails to recognize the strings produced by calls to ti«
LISP communications packages. Here Common LISP provides the intern function to
convert a string into a symbol. This symbol is then fed to ART. As can be seen in
Figure 3-12 below, the intern command requires a prefix that designates which
Symbolics package the LISP function is defined in. The ART package does not have
ali of the Symbolics’ C~mmon LISP functions available.

(bind ?b ¥L(sd:intem (scl:send talk-i .check-ins 3)))

(if (eq 7b ">>>) then

Figure 3-12 Code Excerpt from the Rule read-update

3. Path Planning and Search Algorithms
The second portion of the path planner is the search algorithm. The require-
ments for the algorithm are that it accept as input the following data:
+ Start point
» Goal point
* Vehicle ID
* UTM coordinates of the lower left hand corner of the 10 KM grid window.

The output requirements are waypoints passed individually with the cori. pondiing

sequence number and vehicle ID.
a. Search Region Representation
Planning a path across real or simulated terrain requires some criteri-
on be established that will allow the path planner to choose between routes. Slope is
a common terrain feature used as a simple distinguishing factor [ROWE&88]. The
greater the slope, the greater the cost of traversal. This criterion has some interesting
properties that are not in accord with the physical environment. In APS, effective

slope is an absolute value independent of the direction of traversal. In traversing an

actual physical region a given incline has varying degrees of relative slope depending
on the traversal angle. Since the major goal in this study is to build a test platform
that would allow the testing of search algorithms and their interfaces with simulated
vehicles, this discrepancy is accepted in the interest of simplifying the problem. An in-
teresting result of this simplification is that bidirectional searches can be performed,
because the cost of traversal is independent of the direction of travel across a given
iegion witn a giveu sivpe.

Discrete geometric cells were used because of the simplicity of
conversion from the graphics elevation data to the slope data used by the wavefront
path planner. The use of the wavefront search techninue was based on the
construction of the elevation and slope data files and the case of implementation of
the wavefront algorithm. The slope data files produced by Felhoelter’'s methods were
designed to contain all of the information about a given search region [FELHOESS].
This information included the boundary information that ensured the search algorithm
would not overflow the search region. This boundary information was otherwise
unrelated to slope information of the region. The stripping off of this boundary
information was trivial and could be accomplished while building the slope files or
after they were complete. However it became apparent that the use of slope data
files containing one by one to ten by ten kilometers of slope data would prove difficult.
Using niles built in this manner would have required the use of 1225 to 625 separate
slope data files for a 35 KM by 35 KM map that covered the same region as the map
used by the IRIS based vehicle simulator. It would have also required either
predefining the area to be searched or some other way of selecting the appropriate file
for a given run. Initally a 35 KM by 35 KM slope data file was used, but it was found
that the time to read in the data took as long as six minutes. This long read-in time
occurred because each record of the file had to be read in sequentially untl all of the
data for a given map was read in. This read-in time was reduced to one minute by

converting the text file to a binary tile and using the Svmbolics LISP file-position

43

function, which is Symbolics’ equivalent to the Iseek function of C. Finally, the slope
files were recomputed using the graphical methods developed on the IRiS
workstations. This was done because the methods used by Felhoelter produced
significantly different slope data than that produced on the IRIS workstations. This
difference appears to be based on the fact that the vehicle simulator uses the slope
calculated from the lower left triangle of a one hundred meter square in the graphics
simulation. These triangles were used because they form the planar surfaces used in
the graphical displays on the IRIS workstations, and the drawing routines provide
normals to the surface from which slope can be easily calculated. These methods
were described earlier in this chapter. The only significant difference between th2 (¢
methods is when the slope calculaticns are performed. The slope information for the
Symbolics processes is calculated before the simulation is begun. while the slope

information is produced at system run-time by the vehicle simalator.

C. AUTONOMOUS vs. MANUAL CONTROL

The guidance and control states of APS have been previously described. What
follows contains a fuller explanation of what is involved in the transition between
these swates. The states were designed to be as independent and flexible as possi-
ble, to allow switching in and out of autopilot control while being guided by an exter-
nal agent and. conversely. to allow switching external guidance on and off while
remaining under autopilot or manual control. Ideally, the source of external guidance.
human or Al agent, would be transparent to the guidance system. Unfortunately, the
methodology used for human control introduced asymmetries into the design. An ex-
ternally guided vehicle is controlled by a remote human path planner on another graph-
ics workstation differcntly than it is guided by the remote Al agent. The human
commander designates a path for a remote platform vehicle just as if it were a local
platform. The path is then transmitted across the network in its entirety. Thereafter

the vehicle driver navigates as if the path had been generated locally. On the other

hand, the Al agent transmits one path point (guide point) at a time, successively up-
dating them as the vehicle gets near. The source of this lack of symmetry lies in the
greater functionality of the Al agent. It was designed to calculate a new path if the
controlled vehicle encountered unforeseen obstacles or deviated too far from the calcu-
lated path. This cannot be done in advance. This dual role of global and local planner
was never envisioned for the remote human comniander except in the case of replac-
ing one global path with a new one. In essence then, the external guidance state be-
comes one of exclusive Al agent control and the methods used for the transitions
back and forth between external and internal guidance are designed to accommodate
the different models of guidance and preserve the transparency to the rest of the vehi-
cle simulator.

A platform’s external guidance can be toggled ON or OFF either locally by a
popup menu selecrion from the driving menu or remotely by network message. This
network message is generated by a remote human commander making the same
menu selection as would the local operator. If the selection is made locally. the mode
transition is made. If the selection is made remotely, the message ix transmitted.
Actions on the local platform are the same regardless of the source of the command.
At present, no authentication or permission svstem is used. nor is there a ioval lock-
out or override provided.

Exiernal Guidance OFF --> ON causes ihe following actions:

1) Set ext_guidance toggle ON.

2) Send an INITIALIZE control message to the Al agent containing the UTM
coordinates in meters of the origin of the current ten kilometer box, vehicle identifier,
stari and goal points of the path, and current simulation time (If no Al agent is con-
nected the message is discarded). Note that the start point sent is tne platform’s
current guide point which may not be the SP of the originally assigned path. If the
platform had partially navigated a path under internal guidance, then the guide point

will be the next point in the remainder of the path.

3) Set up the platform to receive guide points by making the platform’s current
iocation its guide point and deleting the remainder of its path. This is done so that the
autopilot, if engaged, will simply bring the platform to a stop instead of heading out di-
rectly for the goal. The portion of the path traversed so far is preserved on the front of
the list.

4) Finally a position update message is sent over the network on both broad-
cast and stream channels. Currently it is this UPDATE message, with its guidance
field set to ON, which triggers the Al agent to calculate an optimal path based on glo-
bal terrain cost data. However, there is nothing in the vehicle simulator to prevent
the Al agent from choosing the start and goal points by itself, sending a message to
turn guidance ON, and then sending guide points from a calculated path.

External Guidance ON --> OFF causes the following actions:

1) The platform’s external guidance flag is set to OFF. This causes any incom-
ing guide point messages for this platform to be ignored.

2) The platform’s path is deleted.

3) Its original assigned path, if any, is reloaded.

4) The platform’s guide point is set to the point on the original path closest to
the platform’s current location. In this way, a platform taken off external guidance af-
ter navigating a portion of a path would not go all the way back to the start point, but
can complete the remainder of the path. Note that the closest path point is not neces-
sarily the best path point pick to minimize travel time or some other performance mea-
sure. Locating the best path point is a non-trivial problem in itself. In some cases
the simple method used will guide the platform back to a previously passed path point
or directly to the goal point. Generally however, when assigned a path with many
fairly short segments, backtracking and loss of time will be limited to one half the

length of the current path segment.

46

5) Finally, a position update message is sent over both broadcast and stream
channels. The guidance field of this message reflects its new state and directs the Al

agent 10 stop sending guide points.

D. COMMUNICATIONS

The amount and sequence of data that must be passed over the network is de-
termined by the functions to be performed. For communications between vehicle sim-
ulators, sufficient data is needed to display the platform on a remote simulator as well
as model its movement. Information flow with the Al agent is determined by the divi-
sion of labor between the vehicle simulator and the commander, human or machine.
Updates are sent between vehicle simulators or to the AI agent only when a state
variable such as speed, course, weapon firing, etc., changes. In general, in communi-
cating with other vehicle simulators on the network, the vehicle simulators PUSH in-
formation over the network using broadcast datagrams to any others who might be
listening. Only upon initialization does the system poll for a response.

There are usually several methods to chose from when communicating between
applications over a LAN. In the case of the APS development environment, TCP/IP
supports byte streams, which require dedicated connections, and datagrams, which
may be connectionless, and even addressless in the case of broadcast datagrams, or
may be sent between connected hosts. The vehicle simulator’s use of a PUSH broad-
cast system to communicate with other vehicle simulators is adequate for the amount
and types of messages needed by that portion of APS. It would have been simpler if
this same approach cculd have been used ior communicating with the Al agent.
Broadcast datagrams provide for reliable! transmission of discrete messages over a

LAN. This means that specific addresses need not be hard coded or determined at

1Datagrams are not usually considered “reliable” because there is no receiver acknowledgement If communication between hosts
is entirely intra-network then the underlying protocol, in this case Ethemet's CSMA/CD, guaranices delivery to each host and,

barring buffer overflow or process termination, the message will reach each process properly attached 1o the addressed port.

47

run time and that each read will return zero or one complete discrete message
(provided the message fits within the network maximum size). However, this proved
not to be feasible primarily due to the limitations of the Symbolics’ implementation of
support for TCP/IP network services. The only arrangement that worked during this
research was a pair of halfduplex stream connections, with the further limitation that
the vehicle simulator must act as the server and the Symbolics as the client. For con-
sistency, communications between Al processors also use stream connections.

The only remaining design decision for the vehicle simulator end of the communi-
cations link was then whether to have the simulator poll the incoming stream connec-
tion for input using a non-blocking read or to spawn a sub-process to continuously
monitor the connection and communicate with the main simulator process through
semaphores and a shared memory buffer to hold messages.

A separate subprocess carries the additional complexity of implementing sema-
phores and shared memory plus the computational overhead of a context switch. Al-
so, during development, when system aborts are common, special care must be taken
not to leave orphan subprocesses when the main process terminates. The main ad-
vantages are immediate response to incoming messages and message preprocess-
ing. The subprocess issues a normal blocking read on the connection, which sleeps
until input is present. This is more efficient than constantly polling. The second plus
is the ability to respond immediately to some query while the main processes may be
tied up in computation and graphics processing.

The polling approach is simpler. In fact, in APS even the initial acceptance of a
connection request is done by polling. On a single processor system, one CPU still
must run both the main and subprocesses so no real time is being gained by running
them in parallel. There may be some concern that the input buffer may overflow
between polls, which in APS happen once each drawing cycle. However, under UNIX,
the receive buffer can be made practically as large as desired (currently 40K bytes) or

at least as large as the shared memory buffer is likely to be, so the risk of overflow

48

between cycles is the same. The system network daemon basically does the same
job as the subprocess, and hopefully, it is more efficient at it than user written code
would be. Tests using dummy Al agent programs which send messages at ten times
the normal rate have not produced evidence of a lost message.

Communications with the Symbolics Al agent are performed as follows:

1) Upon initalization, the vehicle simulator establishes a stream socket, sets it
to non-blocking operations, increases its receive buffer size, and creates a connection
queue as a stream server.

2) Thereafter, during each graphics cycle, the socket is polled by issuing a non-
blocking ACCEPT command. If a stream client, in this case the Symbolics, is waiting
for a connection, two stream sockets are cloned, one for receiving messages from the
Symbolics and a separate one for sending messages to it.

3) If a working connection is established, then a non-blocking rzad is issued on
the receive stream socket. Messages from the Al agent, comprised of character
strings with punctuation character delimiters are extracted from the stream and re-
turned as whole messages to the simulator which takes the appropriate action. The
specifics of how this is implemented are contained in Chapter IV. If the stream con-
nection is broken by the Al agent, then a flag is set and the sysiem retumns to polling
for a connection instead of polling for data to read.

At the Symbolics Al agent, the path planner needs to monitor the progress of
the vehicle, independent from the vehicle simulator updates. This means that calls to
the communications system can not be allowed to wait for data. For this reason com-
munications at the Symbolics Al agent is done using the read-char-no-hang method
to read the input stream. This allows reads from the I/O stream to return nil.

Messages are identified and delineated by non alphanumeric characters. Non al-
phanumeric message delimiters were chosen to reduce the chance of processing par-
tial messages. This could occur if the first part of a message were lost over the

network. It is assumed that a properly delineated message is complete and correct.

49

The use of a data stream requires that the formats of the messages be known in
advance, and that each message be identified as to type. This is accomplished by the
use of non alphanumeric delimiters as mentioned above. A further precaution that en-
sures messages are not lost forever should one message arrive without its leading
delimiters is the use of different length delimiters on the front and back of messages.
The front delimiter is longer than the back delimiter. This is done to prevent a mes-
sage that has lost its front delimiter from starting a cycle of reads that could pass
over the correct first delimiter. The algorithm that receives the messages on the Sym-
bolics workstations checks for the first delimiters, and then reuds in a prespecified
number of characters, based on the message type. The last few characters make up
the ending delimiter. It should be noted that the sending process supplies a null char-
acter between messages. If the ending delimiter were the same length as, or longer
than the beginning delimiter, the ending delimiter could be interpreted as the begin-
ning. Since the rest of the message is not evaluated until the ending delimiter is

checked, message traffic could remain out of synchronization indefinitely once broken.

E. PERFORMANCE MEASURES

In order to make quantitative comparisons among path planning algorithms or
human-machine control arrangements, some numerical figure of merit must be cho-
sen. For tactical vehicles travelling cross-country, some candidates are: transit time,
fuel consumption, enemy exposure, weapons line-of-sight, etc. In this study transit
time ‘vas chosen because it can be tied directly to the terrain data base and platform
characteristics.

For each platform experiment or trial, there is a global planning time and a
transit time. In a sense, the planning time represents a fixed investment cost and
transit time operating cost. An experiment may compare total time (planning and
transit time) or analyze thera separately. As an example of the type of trade-off

study that might be made, consider the current path planning algorithm used. Such a

50

wavefront or breadth-first algorithm may not represent the fastest way to produce an
optimal global path. However, its nature as a neighbor-based algorithm means that
each path step is calculated only on LOCAL cost data. Then, assuming the agenda is
preserved, when a small piece of the data changes, such as the discovery of an
obstacle, only a small region need be recalculated. Its overall performance in the
presence of constantly changing local data might be superior.

This research makes no attempt to produce a definitive measure of effective-
ness. Rather a mechanism is sought that will provide a basis of comparison for oth-

ers to use in measuring the effectiveness of path planning systems.

F. SUMMARY

This chapter provides an examination of the source, thought process, and evolu-
tion of the design of APS. The development of the vehicle motion model and control
response of the vehicle simulator are discussed along with the knowledge base of the
rule-based path planner and path planning algorithms. This chapter concentrated on

the why. The next chapter will delineate the how.

51

IV. SYSTEM DESCRIPTION

This chapter describes how the methodology and algorithms were implemented,
including the function and structure of some of the main programs and rule sets. Data

structure definitions along with some code listings are contained in Appendix A.

A. TERRAIN DATABASE

APS uses terrain data that is a subset of a vegetation and elevation database in
12.5 meter increments for an area of Ft Hunter Ligget, California, provided by
CDEC. This database is preprocessed into 100 meter resolution data by sampling ev-
ery eighth point and then stored in a separate file that is read by APS. Each data
point is 16 bits (2 bytes). The 3 most signiticant bits form a vegetation code which is
used to color terrain polygons in a shade of green for the 3D view. If the vegetation
code indicates light or no vegetation, or no vegetation data is available, then the ter-
rain polygon is colored according to its elevation using the currently designated color
map, usually shades of brown. The remaining 13 bits contain the elevation in feet.
This eievation 1s used 1o draw the 3D terrain, calculate normals for the lighting model,
and calculate slope used by the path planning cost function.

APS is currently limited to the 35 KM by 35 KM area for which preprocessed
data is available. In UTM 10 meter grid coordinates, this area extends from
10SFQ41006000 to 10SFQ77009500. A basic terrain surface patch is formed by the
four elevations of the vertices of a 100 meter square. These points are not
necessarily planar. Since the IRIS cannot quickly render filled non planer polygons,
this polygon is divided along a NW to SE diagonal into two planar triangles which are

rendered as filled shaded triangles. This basic terrain patch is shown in Figure 4-1.

52

The lower left (SW) triangle is called the lower triangle and the upper right (NE)

triangle is the upper triangle.

Y | upper triangle

lower triangle Nl_ //

Figure 4 - 1 Terrain Patch

The elevation of each triangle vertex is stored, along with its X and Z offsets in

a floating point array (the upper left and lower right points are duplicated) consisting

of 72 bytes (3 X 6 X 4bytes) per 100 meter square. In addition, a surface normal 3D

vector is calculated and stored for each triangle. One square kilometer of terrain data

thus consumes 9600 bytes (10 X 10 X 96bytes). The entire 35 KM by 35 KM area

consumes over 11 Mbytes of memory. To maintain performance, only ihe vertex ind

normal data for a 10 KM by 10 KM area selected by the user are kept in memory.

B.

VEHICLE SIMULATION

1. Capabilities
The capabilities of the Autonomous Vehicle Simulator include:

» Acceleration due to changes in engine throttle (thrust).
¢ Deceleration due to coasting and braking.

» Change in vehicle pitch due to acceleration or braking proportional to the mag-
nitude of the change of velocity.

» Vehicle roll due to centrifugal force while tuming.
» Linear steering controls with exponential steering response.

« Damped vehicle oscillations due to changes in vehicle pitch as vehicle travels
over varying terrain.

» Change in vehicle velocity due to terrain slope.

(]
2

* An autopilc: that will navigate a platform along a designated path.

» The ability to handle vehicle control inputs from either local driver controls, lo-
cal/remote autopilot steering commands or remote autopilot/commander path
commands.

* Models multiple vehicles, with selectable independent views from each vehicle
representing weapon sights, commander’s station view, etc.

* Multiple independent viewing axis and viewing positions.

+ Miultiple independent weapon system axis maintained to provide for stabilized
weapon/sighting systems.

» Utilizes graphics hardware for fast coordinate system transformations.

+ The ability to sight, range, and fire weapon systems, including stabilized
weapon systems. The following platforms and weapons are implemented:
tank with main gun SABOT and HEAT rounds, open jeep. closed top jeep.
TOW jeep, truck, Cobra attack helicopter with TOW weapon. and FOGM.

» ANSI C standard source code.

» Broadcast networking to allow muliiple simulations to operate together on dif-
ferent IRIS workstations.

A complete discussion of the user interface for APS can be found in Appendix C.

2. APS Environment

The vehicle control and motion model requires an interface with its simula-
tor environment in four areas: maintenance of and access to terrain data structures:
timing; control inputs; and display of results. From the terrain data structures, it
needs the elevation of an arbitrary point in world coordinates. This is provided by the
functicn gnd_level. It also requires the surface ncrmals for each terrain polygon. Tim-
ing is provided by the routines in medule simtime (Appendix A). Conwol inputs are
provided by reading the mouse position, reading dial positions, or receiving commands
from a remote guidance svstem. Displaving the results, which after all is the main
thrust of the sirnulation, is accorm; .ished by drawterrain after the model "positions”
the vehicle for drawing and sets up the viewing parameters and the projection trans-

formation.

3. Graphics Drawing Cy ~le
Typically, window-based graphics programs operate in a drawing cycle
with an IMPUT-UPDATE-DISPLAY loop. A representation for this cycle in the vehi-
cle simulator is shown in Figure 4-2. The platform modeling routines operate in the

update portion of this cycle. They operate on the platform data structure which is then

initialize terrain, graphics, and I/0
while (state variable)
J {
update simulation timer
while Input In Znput gueue
!
read gueued Input device
4t handle Input
}

harndle rie-work Ilnput messages

7
updare guide poincs and cortrcls (autcopliio:)
update vehicle mcdel

update vehicle pesiticn

draw objects

! send retwork update messages

Figure 4 - 2 Structure of Main Drawing Loop in event_driving

passed on to the display cycle. The only parameters usually required for model rou-
tines are a pointer to the platform and the elapsed time since the last update cycle

was completed.

4. Input
As discussed earlier, control inputs can have several sources, can be set
to override each other, and can be turned on or off depending on the internal state of
the simulator. The source of control inputs is largely irrelevant to the design of the
motion model except for steering. Two ways of modeling steering correspond to two

tvpes of physical control ,ystems. In one, the steering wheel or control device is

N
N

directly connected to the wheels, tracks or control surfaces of the vehicle (Figure 4-
3). External course commands then must be processed into signals to a
servomechanism which physically moves the steering control just as a human

operator would manipulate it.

MANUAL
CONTROL .

COURSE COMMAND STEERING CONTROL

COMMANDS|— |PROCESSOR SERVO] . EFFECTOR

Figure 4 - 3 Manual and Automatic Steering Control

Another arrangement is "fly-by-wire" (Figure 4-4) where manual control
generates a signal which is perhaps one of several input signals to a steering control

system which 1n turn activates physical control surfaces such as wheels. tracks, or ai-

MANUAL gy

CONTROL CONTROL CONTROL
COURSE 3 PROCESSOR | ™3 | EFFECTOR
COMMANDS

Figure 4 - 4 "Fly-by-Wire™ Steering Control

lerons.

APS currently uses the first system. Course ¢dmmands are converted in-
to a turnrate. This turnrate is then used by model routines steering_model and turn-
Ing_model without caring if it came from the steering wheel or remote commands.

Thus the modeling of tuming is independent of the source of the tuming commands.

5. Model Update
The update phase (Figure 4-5) is actually split into two sub-phases. In

the first phase, the new velociry and course are calculated. In addition, any transient

pitch or roll caused by a change in velocity is calculated.

COMMAND COURSE

CURRENT COURSE COURSE

COMMAND _TURNRATE

CURRFNT TURNRATE i mjp- VELOCITY

COMMAND VELOCITY MODEL TRANS PITCH

CURRENT VELOCITY TRANS ROLL
DT

Figure 4 - § Vehicle Model Update Phase

Once the model has updated the platform data structure, it 1s passed on to
the routine update_veh_pos which "moves” the platform to its new location and calcu-
lates orientation angles based on the slope of the terrain. Any oscillations or
"bounce” in wvehicle transient pitch angle 1s calculated by handle_bounce. This is
based on the change in vehicle base pitch angle exceeding some threshold or mini-
mum change. At this point, an interplay exists between attempting to smooth abrupt
pitch changes between adjoining terrain patches and simulating bounce. Because the
terrain is represented by patches, the flat tops of hills or nidges that are less wide
than the terrain cell size are "missed” by the data base. Consequently cresting a hill
and going down the other side is portrayed as an instantaneous change from positive
to negative slope as the line separating the two adjoining patches is crossed. To
smooth out this sharp transition the length of the baseline to the front of the vehicle
used to calculate base pitch was extended forward about 20 meters. This results in
the pitch change being spread over smaller increments as the reference point moves
down the far slope as the vehicle is coming up the near side. Unfortunately this

smoothing can also "smooth” oscillations out of existence. Only expenmentation

57

with the constants pitchbase_distance and bounce_threshold can produce a realistic

compromise.

6. Platform Position and Viewing Parameter Update

APS updates the vehicle position and orientation variables whether or not
the vehicle is currently selected as the viewing platform, the driven vehicle. In MPS
the viewer’s position was not fixed with respect to the driven vehicle coordinate sys-
tem. It was a constant Y offset from the vehicle’s graphical center in world, not body
coordinates. On fairly level terrain this works well, but as the vehicle pitches and
rolls when travelling over rough or sloping terrain the viewpoint or eye position ap-
pears to bounce around inside the vehicle. This movement is disorienting and in some
cases may even result in viewing the terrain from underneath the terrain polygons.
One solution to this problem is simply to not draw the driven vehicle. However, the
viewer then lecses the frame of referc...e the vehicle outline provides. especially
when the view angle is not directy to the front. A more satisfactory solution is to de-
fine the viewpoint as an offset from the vehicle origin in vehicle (body) coordinates
and transform the viewpoint into the graphics (world) coordinates required to estab-
lish the viewing perspective. Such a transformation also allows the viewpoint to be
placed at an arbitrary point in the vehicle which could represent, the gunner’s sight,
commander’s cupola, etc. Setting the viewing perspective is then done as shown in

Figure 4-6 where eye_x, y, z is the sum of vehicle position coordinates and the view-

perspective(fov, 1.0, 0.1, MAXLOOKDIST);
lookat(eye_x, eye_y, eye_2,
L local_px, local_py, locai_pz, (Angle)(viewrolI*"RTOD_X_10));

Figure 4 - 6 Setting Projection Parameters

ing point offset in transformed world coordinates.
The IRIS graphics software also requires a viewing "target” (local_px, vy,

z). for the lookat perspective routine. The homogeneous transform again provides a

58

means for calculating this visual target since it i1s simply a constant displacement
along the body X-axis of the viewer. This corrects simplifications in MPS that ne-
glect cant or body roll in determining point of view. This precision becomes important
when a weapon system is modeled because the point of view is also the point of aim.
A one degree error in azimuth caused by cant corresponds to a 18 meter error at a
range of 1000 meters. Therefore, the MPS routine update_look_pos was modified to

use this procedure.

7. Network Communications
As described in Chapter III, communications among vehicle simulators is
handled differently than communications with the Al agent. Messages among vehicle
simulators, whether each 1s functioning as a peer or a remote human commander, are
passed over the network using broadcast datagrams, while the vehicle simulator and
the Al agent communicate using a stream.
Communication routines are divided into two levels: the APS message lev-

el and the network service level. These levels and the modules that contain level

routines are:

APS message level check_for_packets (receive)
network (send)

message-stream management networx_JO

network system services netstream_services

broadcast_services
a. Vehicle Simulator Communications
(1) Ininalization. Two network sockets. a transmit socket and a
receive socket, are initialized for each vehicle simulator. The receive socket is bound
to an address containing the APS broadcast port number. This port number is
arbitrary, but must be unique to avoid interference with other network services such
as “mail” and “rwho” and must be the same for all vehicle simulators. In APS, the

broadcast port number is a program constant (DEFAULT_BRDCAST_PORT in

59

network.h). An alternative method of assigning a port is by defining a "service” in the
network system file "/etc/services”. The system service getservbyname can then be
used to determine the port number at run time. This method has the advantage of
allowing changes in the port number without recompiling the program should the port
assignment interfere with some other network application. However, each system
running a vehicle simulator must have the same service definition for APS. Finally,
each socket is set to BROADCAST mode, non-blocking I/O, and has its buffer size
increased to RECV_BUFSIZE (currently 40K bytes). Since the most common

broadcast message is an UPDATE packet with a size of 180 bytes, each vehicle

simulator can normally receive = 220 packets before the buffer overflows. In
communication tests, no such loss of message traffic has yet been observed.

After the sockets are established, each vehicle simulator sends a
polling message to svnchronize itself with any other already running sitmulators. A
response to this initialization message sets the initial 10 KM terrain box to that area
already being viewed by a running simulator.

(2) Sending Messages. Messages are sent as chardacter strings
divided into a header string that identifies the type of message and a varyving length
data string. The first character in the header string is a message token. a character
that uniquely determines the message type. The rest of a message is the formatted
output of a sprint command containing from one to thirteen fields. All messages are
built and sent by routines in module network(). This routine is called with one
argument indicating the type of message that is requested. Message types are
shown in TABLE 1. The function network() also contains several local static vanables
which contain data used in building a message. For example, to send an UPDATE

message the routine set_cntlimsg_platform(platform_pointer) ‘s called to set the

60

vehicle then network(SEND_ UPDATE_PACKET) is invoked to build and dispatch the

message.
TABLE 4-1 VEHICLE SIMULATOR MESSAGE TYPES
TYPE FIELDS DESCRIPTION

INIT_MESSAGE Polls for other vehicle simulators.

ANS_MESSAGE x_gnd, y_grid Answers INIT_MESSAGE and
sets origin of 10KM box.

UPDATE_PACKET vehicle id, type, Updates platform data on remote
UTM x,y, course, vehicle simulators.
speed, weapon azimuth,
weapon elevation,
transient pitch, transient
roll, control mode,
external guidance.

END_PACKET base id number Tells remote vehicle simulators to
delete all platforms belonging to
this host.

FIRE_MESSAGE firer x,y,z, target x.y.z, Sends a weapon system firing
weapon azimuth, event. The flight of the projectile
weapon elevation is then modeled on each

simulator.

LOCK_ON _MESSAGE vehicleid Sends id of platfori: that is/is not

LOCK_OFF_MESSAGE being tracked by FOGM.

DESTROY_MESSAGE vehicle id Sends message notifying remote

CRASH_MESSAGE simulators that platform has been
destroyed.

(3) Receiving Messages. Since datagrams contain discrete APS
messages, the type of an incoming message is determined by matching .he first
character of the header string with a character token. The data string is then
disassembled by a formatted string read (sscanf in C) and the appropriate action faken.

This message handling occurs in module check_for_packets(). Once during each

61

drawing loop this routine is called. It loops handling messages until no input is

available.
b. Vehicle Simulator - AI Agent Communications

(1) Initalization. The communications stream is set up by initializ-
ing a stream socket, setting it to non-blocking I/O, increasing its buffer size to
RECV_BUFSIZE bytes, and establishing a connection queue by calling the listen
system service. The socket is then polled once each drawing cycle using a non-block-
ing accept system service. Two sockets are then cloned to handle the receive and
transmit streams and a global flag, control_connected, is set indicating a connection
with the Al agent has been established.

(2) Sending Messages. Messages are sent as a continuous string
of characters with no imbedded "white space” characters such as spaces, tabs, or
linefeed. All numeric fields must be zero filled. Each message is preceded by a fixed
number of a unique delimiter token characters, usually a punctuation character, {.7.@,
etc.. The variable length data string follows. A message is terminated by a number
of delimiter characters, one less than at the front of the message. Since stream 1/O
implies an unbroken flow of data, these front and read delimiter characters serve to
identify the type of message and provide begin and end message markers at the pro-
gram level. This additional framing allows resynchronization should a portion of a
message be lost or garbled. It also allow recognition of different tvpe messages by a

simple finite state machine. Messages to the Al agent are built and sent by calling

routine control_message(message_type) contained in the module network. The types
of messages sent to the Al agent are contained in Table 2:

TABLE 4.2 VEHICLE SIMULATOR to AT AGENT MESSAGE TYPES

TYPE FIELDS DESCRIPTION
INITIALIZE UTM x,y of 10KM box Tells Al agent which plauorm to
origin, vehicle id, plan path for and what part of

path start x,y goal x,y, terrain database to load.
simulation time

UPDATE vehicle id, vehicle Updates platform data. Initial
location UTM x,y, guidance ON message triggers
simulation time, path calculation.

guidance flag

OBSTACLE obstacle vertices Sends coordinates of vertices of
detected obstacle.

CONTROL vehicle id, Sends status and control flags.
simulation time,
control code

(3) Receiving Messages. Routine check_for_packets() also
handles incoming stream messages by calling recv_control_message(). If no Al agent
1s connected, it polls for a connection. If it can form a valid APS message from
characters in an internal buffer. then it returns TRUE otherwise it returns FALSE.
Messages are recognized using a finite state machine. Incoming characters are
returned to recv_control_message() by get_msgchar(), which returns the next
character in the block buffer and keeps the buffer filled as necessary by reading the

stream. If the stream read returns 0, then the client has broken the connection so the

63

current message, if any, is discarded and the flag is set to begin polling for a
reconnection. Message types received from the Al agent are contained in Table 4-3.

TABLE 4-3 AI AGENT to VEHICLE SIMULATOR MESSAGE TYPES

TYPE FIELDS DESCRIPTION

CUIDEPT vencle id, Il external guidance is set for plat-
path point UTM x,y form matching vehicle id, then the
platform’s guide point is replaced
by the incoming point. If recv_path
is set for platform then incoming
point is added to path being built.

CONTROL vehicle id, Turns guidance ON/OFF,
stmulation time, recv_path ON/OFF, or
control code autopilot ON/OFF.

8. Simulation Time
It is often desirable to change the speed at which the simulation runs by
modifying the ratio between real (clock) time and sirmularion time. This is done by fil-
tering calls to the system clock through the simtime module. This allows, for example,
simulation time to be suspended while menus are displayed. The routines available are

shown in Figure 4-7.

9. Simulating Weapon Systems
Platforms in APS can be equipped with weapon systems by defining the
weapon’s characteristics, ammunition types, and sight reticle. A platform with a weap-
on system can engage and destroy any other platform, local or remote. Figure 4-8
shows the view through a TOW weapon sight looking at an attack helicopter. Weapon
data structure definitions are contained in "weapons.h” which is reproduced in Appen-

dix A. Current weapons include tank main gun with SABOT and HEAT rounds and the

TOW antitank weapon system.

start_simtime() - Starts simulation time at 0.

stop_simtime() - Halts simulation time from advancing,
i.e. freezes time.

restart_simtime() - Restarts simtime when halted.

change_simspeed(float ratio) - Changes the ratio ot
simulation time / real time. That Is, a ratio value
of 0.3 will cause simulation to run 3 times slower
than real time, or 3 seconds of real time wlli elapse
for every 1 second of simulation time.

float read_simtimer() - Returns the current time since start_simtime
was called in simulation seconds.

void set_time_mark(void) - sets a time mark by storing current value
of simtimer in local static "package" variable.

float elapsed_time_wreset(void) - returns elapsed time in seconds
since time mark and resets time mark.

Figure 4 - 7 Simulation Timer Module Routines

65

Figure 4 - 8 View Through TOW Weapon Sight

66

Weapon system data structures are as general purpose as possible, to fa-
cilitate addition of other types of weapon systems and munitions. Each platform con-
tains an array of pointers to onboard weapon systems, one of which is selected as the
current weapon. Each weapon system is represented by an instance variable which
contains data specific to that platform and pointers to class variables which contain
generic data for that type of weapon or munition. The tank, for example, has a pointer
to its weapon class variable and a pointer to the munition class variable for the partic-
ular type of round currently selected. Which sight reticle is drawn is determined by
looking into the weapon class variable of the currently selected weapon for the cur-
rently selected platform. Presently tank main gun, binoculars, and TOW sight reticles
are available?.

Target ranging is also simulated for those weapons that normally have
such a capability. The tank, for example, simulates a LASER range-finder by doing a
gselect (similar to a graphic pick) on a three degree field-of-view along the firer’'s
line-of-sight (LOS). The select list is examined for platform identifiers, except that
of the firer, and returns the range to the closest one. This range is displaved in the
weapon sight reticle. Platforms which no weapon system, such as jeeps, of course
have no range-finding capability. They have, however, been provided with variable
power binoculars selectable from the main driving menu.

Although range-finding with a LASER happens quickly enough so that it
can be completed in a singie iteraiion of the drawing loop, actions such as the flight of
a round extend over multiple drawing cycles. In order to support such transient
events without congesting every possible drawing loop in APS, an event handler
which is called once each drawing loop was implemented. Events, such as a round in
flight, are implemented as a linked list of event data structures (described in

"weapons.h") with a common part containing a time stamp, delete flag. and pointer to

1
Data is unclassified hypothetical data represenung the genenc charaderistics of the represented item and ts not ntended 1o
exactly match any actual system.

67

a function which can process this type of event. Each event also contains a variant
part containing type-specific event data fields. Once each drawing loop the event
handler is called. It traverses the event linked list. If an event is not marked for dele-
tion, a call is made to its processing function via the pointer, with the address of the
event record as the parameter. This allows the event processing function access to
the type-specific data. Types of events currently implemented are:

1) round_in_flight - flies ballistic rajectory.

2) reset_safety - timeout to reset weapon safety after reload time.

3) message - displays message on screen for set pericd of time.

4) splash - draw splash of round miss for specified amount of time.

5) flash - draw expanding flash at impact of round with platform.

6) bounce - varies vehicle pitch based on elapsed time since going over
bump in the terrain.

Firing a weapon in APS results in the simulation of the projectile’s flight
until impact with the ground, another platform, or maximum range is exceeded. The
svstem assumes that the weapon syvstem has some type of ballistic computer that
will provide elevation to the weapon based on the range to the target, type of ammuni-
tion, etc.. This allows the position of the round along its ballistic path to be computed
from a table of offsets in the Y (UP) direction, called its ballistic table, by scaling the
offset using the current range from the point the round was fired. This produces an or-
dinate for the current range. A cylindrical viewing volume is then constructed along
the LOS at the time the weapon was fired offset by the ordinate. LOS guided muni-
tions such as the TOW are processed the same way, except that their ordinate is al-
ways zero and the flight volume is based on the firing platform’s current LOS not the
LOS at the time of firing. The near and far clipping planes are set to the starung and
ending position of the round during the increment of time since the last update. This
cylindrical volume is "swept" using gselect and the closest target to the firing vehicle

is destroved, if it is hit. If no target is in the volume. the round is checked for impact

68

with the ground and a splash drawing event is added to the event list. Finally, if the
round flies beyord the edges of the terrain box, or exceeds its maximum range, it is

terminated.

10. Module Descriptions
This section presents a brief description of the main modeling and simula-
tion modules.
a. Program Control Flow
Program control flow is determined by state variables modified by the
user through input from the dials, mouse, or menu syster. Program structure is elab-
orated in Appendix A and the user interface including the menu system in Appendix C.
b. Supporting Routines
Supporting routines that perform a single function are too numerous
to fully describe here. A listing of all modules is contained in Appendix A. Due to the
incremental deve.opment of MPS, some modules overlap in function.
¢. Data Structures
The data used to model vehicle motion is kept in the platform data
structure defined in the "aps.h” (Appendix A). The platform data structure contains
several state variables and toggles which are implemented as C enumerated types or
a locally defined Boolean type. These state variables could be combined into a single
variable using bit fields which would be more space efficient. This was not done due
to the additional complexity of accessing bit fields and because bit fields are perhaps
the least portable feature in ANSI C.
d. Turning/Steering Module
Steering is modeled using three routines:

- float convert_course_to_turnrate(Vehicle *plattorm) - Converts command
course to turnrate which can be fed to the turning model. If the platform
viewing mode is driver, the input is coming from the dials or the autopilot.
This input is in the form of a commanded course or azimuth and the turnrate
to direct the vehicle onto this course must be computed. This computed

69

turnrate is stored in the cmd_turnrate field of the platform record. This
routine is implemented using the following rules:

., If the difference between the command course and current course is
less than a small delta, CSE_WANDER, then make them the same.

2) If the difference is less than AUTO_TURNRATE, then use differenc~
as turnrate. Note that this may cause oversteer if the update time in-
terval is greater than one second.

3) Otherwise use AUTO_TURNRATE.

* update_platform_steering_model(Vehicle *platform, float elapsedsec,

Boolean *network_packet_needed) - This
routine first calls turning_model to calculate the current turnrate. It then ap-
plies the current turnrate and time interval to calculate a new course. Final-
ly, the viewing angles in the platform record are adjusted so that the view
azimuth changes with the course.

« float turning_model(fioat elapsedsec,
float curr_turnrate,
float cmd_turnrate) - Returns exponential steering re-
sponse if command turnrate is greater than current turnrate. If straightening
out then centrifugal force is assisting so turnrate change is immediate.

e. Velocity Module
Consists of the routine float velocity_model{ float di, tioat slope,
float currvel, float cmdvel, float *pitch, Boolean *network_packet_needed). This rou-
tine returns the new platform speed using methods described in Chapter III. It also
calculates and updates the transient vehicle pitch due to acceleration or braking. This
transient pitch simulates the torque on the vehicle body during sudden velocity
change as the vehicle body is constrained by the suspension system.
f. Bounce Module
Vehicle bounce due to changing terrain slope is started by routine
update_veh_pos which sets the initial transient pitch angle amplitude if there is a
change in vehicle pitch greater than BOUNCE_THRESHOLD (currently two degrees).
Routine handle_bounce calculates a new transient pitch angle and updates the bounce
amplitude field in the vehicle record. If the bounce amplitude has fallen below

PITCH_STEADY then it is set equal to zero.

70

8. Math Module
Contains various general purpose math routines.
float convert_normal_to_slope(float normal[3}) - Returns the slope angle of
a terrain polygon in radians based on surface normal.

transform_body_to_world(float azimuth, elevation, roll,

tioat dx, dy, dz,

float *eye_x, *eye_y, *eye_z) - Transform body
coordinates to world coordinates.
float calc_azimuth(float x1, float y1, float 21, float x2, float y2, fioat 22) -
Returns azimuth in radians from the positive X axis for a course from point!l
to point2.

h. Path Operations Menu Module

This module (contained in do_pathops.c) contains the high level func-

tions to create and delete a path, assign a platform to a path, and toggle the display of

paths on and off. When called by selecting the "PATH OPERATIONS" option from

the main driving menu, in module do_driving_menu, a popup menu is constructed and

displayed. If a valid menu choice is made then the function selected is performed by

calling one of the routines:

bulld_path - Displays instructions, initializes a path structure, adds a point
to the path and redraws the new path each time the left mouse button is
pressed, prompts for a path name when right mouse button is pressed, adds
path to path list, and updates path data file to add new path.

select_and_remove_path - Displays instructions, when rnight mouse is
pressed uses pick to determine which path was selecied, deletes path from
path list, saves remaining paths in path data file.

assign_veh_to_path - Displays instructions, when right mouse is pressed
uses pick to determine which vehicle icon was selected, makes cursor into
vehicle icon, when icon cursor is moved over any point on a path and right
mouse is pressed uses pick to determine which path is selected, makes copy
of path for platform and sets platform’s guide point to first point on the path.
If platform is not local sends path over network to home simulator.

This module also contains functions to p.ck and display paths:

draw_path - Draws a single path as a black line with a blue box around the
first point and a red circle around the goal. Paths are drawn in overlay bit

planes so that it would not be necessary to redraw the entire 2D map each
time a point is added to a path.

display_paths - Displays all paths in normal drawing or pick mode depend-
ing upon its argument and returns the path identifier ot the picked path.

plck_path - Calls display_paths in pick mode and returns pointer to the path
selected or NULL if no valid path 1s selected.

i Path Module

This module {contained in "path.c") 1s a package which contains the

low-level functions that operate on paths. The path data structure was shown in Fig-

ure 3-7. Paths are only manipulated using the functions in this module. Function pro-

totypes are declared in "pathfunc.h”. Since most of these functions operate on a

specific path, most have a pointer to a PATH structure as one of the input arguments.

Path points are kept as UTM coordinates and are converted 1o graphic svstem world

coordinates as necessary. The following functions are supported:

addpt - Adds a path point to the end of an existing path.
addpath - Adds a path to the end of the path linked list,

at_goal - Returns TRUE if path point has the same coordinates as the last
point on a path.

copypath - Copies path points from one path to another.
delete_path - Deletes path structure and frees up space.
delete_list_path - Deletes path from path list.
delete_veh_path - Deletes platform copy of path.

init_path - Returns pointer to a new path structure.
load_paths - Loads paths from data file.

nextpt_on_path - Returns pointer to the next point on a path.

reset_platform_path - Clears platform path and reloads path originally as-
signed if any. Calls start_down_path to set initial guide point to path point
nearest platform’s current location.

save_paths - Writes out all currently defined paths to binary file in the cur-
rent default directory. The file structure description is contained in
"pathdata.h".

set_guidept - Replaces the platform’s current guide point with input argu-
ments and discards remaining path points.

72

» start_down_path - Returns pointer to paih point closest to the input argu-
ment point (usually platform’s current location).

* update_guidept - If platform is within VICINITY meters of current guide
point and that guide point has a successor, set the platform’s guidept field to
point to next point on the path.

J. Autopilot Module
The autopilot works by setting the platform’s commanded course and
speed to follow its assigned path. For each local platform that has its control field set
to AUTOPILOT and has a non-NULL guidept (i.e., it has a point to head towards)
the autopilot performs the following functions:

1) Update the guide point if within a prescribed distance.

2) Handles obstacles (currently not implemented).

3) Update the platform’s emdcse to the azimuth from the platform’s current lo-
cation to its current guide point.

4) Sets commanded speed depending upon the current distance to the guide
point. If the platform is so close that it might overshoot the guide point ther braking
is applied by setting cmdvel = -1.00. The platform’s course iIs also frozen to a.0id
turning if the autopilot is engaged while the platform is near a guide point. Note that
the current implementation does not control the platform with sufficient precision to

navigate an obstacle field.

B. RULE-BASED PATH PLANNER

The path planner i1s implemented as three distinct levels. The top level is re-
ferred to as the path planner control program. It is through this program that overall
control of the path planner is accomplished. The intermediate level consists of the
search control program, which is implemented cn a separate Svmbolics workstation.
The search control program controls access to the implemented search algorithm. Fi-
nally, at the lowest level is the implemented search algorithm. It is located on the

same Symbolics workstation as its contro! program.

73

1. Path Planner Control Program
The path planner control program is located on the Symbolics workstation,
SYM4. It is implemented using ART, a rule-based, expert system shell. The rules in
this program control the action of all subordinate processes. There are 24 rules,
grouped into the following seven categories.

« Setup

» Communications

« Clock actions

e Vehicle monitoring

» Vehicle and Path control
e Search control

+ Factclean up

This grouping of rules is used for conveyance of explanation. and does not
necessarily have any bearing on the firing order of the rules. Appendix B contains a
listing of the coue.

a. SetUpRules

The locatton of the vehicle simulation program and the search are
variable as -tated in Chapter Ul This requires that the user input the location of
these processes at the start up of the path planner control program. Two menu rules,
menul and menu2. are used for this. These in turn enable two communications start
up rules, start-iris-comm-links uand start-sym-comme-links. These communications
rules open a TCP/IP 1/O stream to the vehicle simulator process on -+ appropriate
IRIS workstation, and a CHAOSNET [/O stream to the search control program on the
appropriate Symbolics workstation. Program start up is the only time any of these set
up rules are fired.

b. Communications Rules

The heart of the path planner control program’s abilitv to monitor the

actions of other processes on other mactines i Qs ability 1o recetve imtormution. This

v oveomoe. -oonmrmts it e e e e e

information is received via seven communications rules. Two of these rules. check-
comm-links-iris and check-comm-links-sym are used to continuously check the 1/O
streams for incoming messages. These are the only communications rules in the path
planner control program that are cyclic in nature. These rules are at the lowest active
precedence level, and therefore do not cause any problem with indefinite postpone-
ment of other rules. The set up rules have a lower salience value but are only fired at
program start up. These rules are cyclic because between the two of them they either
assert facts that cause themselves to fire again, or cause rules to fire that in turn
cause these two rules to fire again. These rvles continue this cyclic action as long as
there are no incoming messages.

When an incoming message arrives, one of the iwo previously mentioned rules
asserts a fact indicating the tvpe of message that arrived. Once this fact is asserted.
one of four message handling rules reads in the message from the appropriate /O
stream and updates the knowledge base. These rules are: read-init-in, read-update-
in, read-map-readyv-in, and read-wayvpoint-in. The messages read in are as follows:

* Vehicle initialization message
* Vehicle update message
» Search map readv message

* Incoming waypoint message

¢. Clock Rules
Each vehicle following a path computed by the path planner has a real
time clock associated with it. The vehicle's clock is inmtally set to the time contained
on the initialization message. This 1s done via the set-clock rule. When subsequent
messages contain a time the vehicle’s clock is reset to the message’s time using =
reset-clock rule. If no messiages arrive over the networks the vehicle's clock 1s
updated via the update-clock rule. This last rule enables the path planner control

program to calculate a projected new position for the vehicle.

d. .cle Monitoring Rules
‘'When a message arrives carrying vehicle update information, the up-
date-vehicle rule modifies that vehicle’s schema to reflect the new location, course,
velocity, time and guidance mode. If no message arrives to update the vehicle's
record, the update-clock rule gives the vehicle’s delta-time fact a value. If the value
of the vehicle’s delta-time fact is positive. the change-position rule calculates the
distance traveled, updates the vehicle’s location, resets the vehicle’s delta-time fact
to 0, and indicates to the knowledge base that the vehicle has moved.
e. Vehicle and Waypoint Control Rules
When either the update-vehicle rule or the change-position rule fire,
the knowledge base is updated o indicate that the vehicle has moved. This change to
the vehicle’s schema within the knowledge base fires the check-for-new-waypoint
rule. This rule calculates the vehicle’s current distance to the vehicle’s current way-
point. If the distance to this waypoint is less than 200 meters, the vehicle's control
schema is modified with the fact, (new-waypoint yes). When the knowledge data-
base contains the control schema for a vehicle with the fact, (new-wavpoint ves). the
send-new-waypoint rule fires sending a new waypoint to the vehicle simulator. In
this implementation, every other waypoint is skipped to mimic more closely the hu-
man commander’s capability of skipping over 100 meter grid squares in his path plan-
ning.
f. Search Control Rules
After a vehicle has been initialized in the path planner control pro-
gram’s knowledge base, the load-map rule is fired. This rule tells the search control
program to load a 10 KM by 10 KM map, with the specified lower left hand comer’s
UTM coordinates. After the map has been loaded and the search control program
sends a message indicaung that the search map is ready, the start-path rule fires.
This rule gives the search control program the start point, goal point, and the vehi-

cle’s ID.

g. FactClean Up Rules

In order to prevent false firing of rules, used facts and schemas are
cleaned out of the knowledge base whenever possible. The clean-up-iris-msg and
clean-up-sym-msg rules clean up unclaimed waiting message facts. These facts are
asserted by the check-comm-links-iris and the check-comm-links-sym rules when
there is a message out of synchronization or spurious characters in the /O stream.
The clean-up-waypoints and clean-up-vehicle rules are fired when a vehicle goes
out of guidance mode on the vehicle simulator. These rules remove all references to
the vehicle from the path planner control program’s knowlecge base. This ensures

that the next time the vehicle requests a path, an old path is not given.

2. Search Control Program
The search control program can be run from iy Symbolics workstation, ex-
cept SYM4 where the path planner control program resides. The search control pro-
gram directly monitors the search algorithm and keeps track of which wvehicles have
maps and paths. The search control program receives two tvpes of messages from the
path planner control program. The first message requests that a 10 KM by 10 KM
search map be loaded into a map array. This message specifies the vehicle ~nd the
UTM trom the lower left hund corner of the 10 KM by 10 KM area to be searched. The
secend message requests that an opumal path be found from the start to the goal
This mcssage specifies the vehicle, the start point’s UTM, and the goal point’s UTM.
The map-array is a 102 by 102 grid. The size of this array is chosen to allow a search
map with a resolution of 100 meter squares to be loaded into the map-arrayv. including
a border of non-traversable cells, to bound the search algorithm.
a. Loading?t -
When a message is received that requests a map be loaded, the
search control program checks to see if that map has ever been loaded before. This is

accomplished by first converting the map UTM and vehicle ID information. contained

77

as strings in the message, to LISP symbols and stored in veh-map and current-veh.
The *maps* list is then checked to see if the newly generated map symbol is on the
list. If the symbol is on the list, a message is sent to the path planner control
program indicating that the map is loaded and ready to be searched. Alternatively the
search control program builds a map-array with slope data from the data file used by
the search algorithm. Finally, the symbol value of veh-map is then stored to the
symbol value of the symbol stored in current-veh. The symbol value of current-veh is
then added to the list *vehs*.
b. Searching the Map

After the map is loaded. the search control program receives a4 mes-
sage requesting a search be done for an optimal path. The message received contains
the vehicle's 1D, the desired path’s start and goal points in UTM coordinates. as well
as the map’s lower left hand comer UTM coordinates. The UTM coordinates are con-
verted to coordinates used by the wavefront search algornthm. The wavefront search
algorithm is called with the appropriate map-array selected from the *vehs* list. The
returned list of points 1s converted back to UTM coordinates. During this conversion a
random number generator is used to move the wavpoints around inside their 100
meter by 100 meter grid. This is done to simulate the commander’s selection of a path
from a low resolution map. Since the goal point may be a specific puint, i 1s appended
to the end of the list. Each waypoint is also tagged with the requesting vehicles ID
and a scquence number. The sequence number is used by the path planner control pro-
gram to keep track of waypoints.

¢. Returning Waypoints

Waypoints are sent to the path planner control program one at a time
for each path. This is accomplished through the send-waypoints function. The function
is sent the list *wave-paths* every time the search-controller function cvcles
through its do loop. This list, that is sent to the send-wayvpoints function. contains. as

separate lists, the remaining wavpoints for everyv vehicle that has reuuested a path.

Each list is stripped of the first element. and this element, a waypoint, is sent to the
path planner control program. This cycling continues until all of the wayvpoints have

been transmitted.

D. SUMMARY

This chapter contains the description of the implementation of APS. The most
salient modules and structures of the vehicle simulator are described with specific ex-
planations of key code fragments and routines. The rules and control flow of the path
planner is also described with a thumbnail sketch of each family of rules. This chapter
explains how APS works while the following chapter describes the results of running

the system.

V. SIMULATION RESULTS

APS achieves a large part of its research goals. A platform, depicted with a fair
degree of realism, can be guided along a path, which is calculated in real-time, to its
goal. However, direct comparisons of human and machine path planning are not pos-
sible due to a bottleneck in communications t:tween the vehicle simulator and ma-
chine path planner. Also, due to time constraints, some capabiliies were not

implemented. The most important shortfall is local obstacles and obstacle avoidance.

A. VEHICLE SIMULATOR

The vehicle simulator achieves all the design capabilities listed in Chapter IV.
Most importantly, it is able to support navigation of a platform along a designaied
path, under various combinations of manual and autonomous control. The path can be
designated by a remote human commander or an Al machine. The remote commander
can also turn the platform’s autopilot and external guidance conwols on and off, even
while traversing a path under Al agent control.

The network communications supports connected multiple vehicle simulators
with real time interaction supporting command and control and combat "dogfighting”
capabilities. Simultaneous control of multiple platforms by different sources was dem-
onstrated allowing local control of some platforms while others are controlled remote-
ly by the Al agent.

The current vehicle simulator drawing cycle speed hovers near 4 frames a sec-
ond. This speed produces jerky scene changes on the visual display and makes pre-
cise vehicle control difficult. However, it remains sufficiently realistic to support
navigation over calculated paths. Run-time analysis indicates that steady state per-

formance is bound by graphics operations and not computational load’.

1., .
CPU unlization was 50% -70% wath the CPU wsiung predominately for graphics calculauons or drawing.

&0

B. PATH PLANNER

Two key research goals of the path planner were to provide an easily under-
stood interface between the vehicle simulation and the path planning algorithm, and to
provide the mechanism for easy iniegraton of search algorithms at the control inter-
face level. The Al path planning program developed for this thesis has been tested in
real time. The path planner supports the major goais of this thesis. It provides a func-
tional interface whereby different search strategies can be evaluated and tested
against a human planner. The Al path planner provided optimal paths for the driver of
the simulated vehicle, using a wavefront search algorithm.

The path planner spends between one and one half to five minutes finding an op-
timal path. After the path is found the path planner control program begins returning
waypoints. The issuance of waypoints along the path is not sufficiently fast enough to
compete with the human planner. This is mainly due to the fact that the human plan-
ner issues an entire path to the vehicle at the beginning of the path, while the Al path
planner is only allowed to issue one wavpoint at a time. The Al path planner must ap-
parently wait on buffered network communications. A "work around” exists to force
the Al path planner to send the entire path as soon as the path is found. This howev-
er. would remove the path planner’s ability to react to changes in the terrain as the
vehicle travels along the path.

A rule-based path planner control program, written in ART. controls the flow of
path requests and the issuance of waypoints. More than one simuiated vehicle can be
guided along a path at the same time. The path planner control program allows multi-
ple vehicles to be guided as long as each has a unique vehicle ID.

The randomly generated offsets to ihe waypoints that are used to simulate a
human path planner’s waypoint selection within a one hundred meter square grid do
not adequately simulate the way a human path planner selects waypoints along a
path. The human planner generally chooses a path that transitions smoothly from grid

to grid. except where demanded by terrain. The use of random numbers to select the

g1

position of waypoints within the designated one hundred meter squares causes these
waypoints to be unnaturally placed along the path. This can cause the simulated
vehicle to make sharp changes in direction for no apparent reason.

The <kipping of waypoints to provide a more reasonable next waypoint for the
driver only appears natural in terrain that is typified by gradual changes in slope.
Where the terrain changes slope frequently and drastcally, the skipping of waypoints
can cause the vehicle to traverse areas cf extreme high cost. This occurs when the
path planner has planned a route around a finger of a hill, but the waypoint avoiding

the finger is skipped.

C. COMBINED SYSTEM

Obstacles, obstacle avoidance and local path planning were not implemented.
Therefore, path transit time was purely ¢ function of vehicle speed and an actual opti-
mal path directly calculable from the global terrain data.

Several wials were run over identical routes (2-7 KM long) under human and Al
agent path planning. Human path planning is relatively quick and accurate when there
is distinctive terrain such as steep hills and flat valleys: that is, when the best route
1s fairly obvious. When terrain is mixed and the trade-off between going straight over
steeper terrain or making a detour is more subtle, the visual decision becomes more
difficult.

Since there were no obstacles, most trials were run with the autopilot. The au-
topilot always tries to maintain maximum speed, so a correctly calculated optimal
path traversed on autopilot should result in a minimum transit time. Unfortunately, di-
rect comparison between human and Al agent planned paths was not possible due to
the inability of the Symbolics system to keep up with the vehicle simulatoi. Instead
of the AI agent updating guide points when the vehicle was within 200 meters, so
that there would be no break in speed, the vehicle would cften reach a guide point and

come to a stop before receiving the next guide point. When such a deluved guide

point was received, an additional time penalty was incurred as the vehicle simulator
accelerated up to the maximum speed allowved by the terrain. As a result of this delay
in receiving new guide points, transit times under the Symbolics Al agent control
were 2-3 times longer than transit times for human planned paths. Consideration
was given to working around this problem by having the Al agent send the entire path
once calculated. However, this would eliminate the capability for the Al agent to dy-
namically moaify the path, based on obstacles or other detours, so this option was re-

jected.

VI. SUMMARY AND CONCLUSIONS

A. LIMITATIONS

1. Vehicle Simulator
The APS vehicle simulator is currently limited in the following ways:

» Applies only to tactical vehicles travelling off-road.

+ Models single gear transmission vehicle for acceleration.
» Operates in a single terrain database.

» Has simplified vehicle-terrain interaction model.

+ Simulates joystick driving controls with a mouse.

There are some features of the vehicle simulator that don’t work correctly
or fail to worx under certain special circumstances. A list of such features. the nature

of the fault and all other known bugs is contained 1n Appendix D.

2. Path Planner
The Al path planner is currently limited in the following wavs:

» The path planner does not take into account local ob: ucle avoidance.
* A vehicle can be run on an Al generated path only ¢ ~ze.

* Only one Symbolics workstation is available to run the path planner control
program written in ART.

» The terrain slope data file must be preprocessed into the correct format.

» The planned path is limited within a ten kilometer region.
B. AREAS FOR FURTHER STUDY

The most pressing need for further development is to remove the bottleneck at

the Al a~ent end of the communications and to add obstacles and obstacle avoidance.
Breaking the path planner’s message processing logjam would allow direct
compariscns between the actual transit time of human and machine planned paths, a
major goal of this research. Obstacles would add the global-local dimensicn to

functional acsignment trade-offs between human and machine planners. another

g4

unexplored area. Other areas for further study lie in increased realism and added
functionality for the vehicle simulator with multiple algorithms the focus for the path

planner.

3. Vehicle Simulator
The most fruitful areas for further study of the vehicle simulator are simula-
tor realism, graphics performance, local autonomous operations, and program struc-
ture/software erigineering issues.
a. Program Structure / Software Engineering

The vehicle Simulator program consists of =37,000 lines of source
code in 238 files. About 7500 lines are pure drawing code, that is. polvgons and fig-
ures. The majority of the source files contain a single function. This flat program
structure in such a large program doesn’t provide the modularity or encapsulation nec-
essary to manage the rapid meodification and maintenance necessary in a syvstem sub-
ject to the constant flux of research. For example. to add a new platform type say an
Armored Personnel Carrier (APC), would necessitate modifying more than 20 files,
even if its graphical object definition, matenal definitions, and vehicle characteristics
were already available. A requirement to modify the platform modeling or control for
this new ve’™ izle type would entail even more extensive and treacherous changes.

An Object Oriented Programming (OOP) Language would provide an
order of magnitude simplification of the program stucture and code. Encapsulation
would limnit the effects of code modifications reducing debugging and retesting of work-
ing components ensure the containment of side effects. Inheritance would eliminate
duplicating code that performs essentially the same thing but in slightly varving
ways. For example, this would allow each platform to be an instantiation of a general
class containing methods for control, modeling, and display. These methods would

then operate on class and local data structures to provide the required function.

N

Since the vehicle simulator is written in C and currently C seems 1o
have the most thorough and efficient interface to the SGI graphics library, a C based
OOP language such as C++ or ObjectiveC would be appropriate candidates for such a
conversion, with a low risk that performance penalties might eliminate its advantages.

Another alternative is Ada. Encapsulation and inheritance can also
be implemented through Ada "packages". In addition Ada is expressive enough to
serve as a program design language (PDL) and 1is, after all, the DoD "standard" lan-
guage.

b. Realism

Current research at NPS has produced some capabilities that could
enhance realism without a large performance penalty. The realism of the 3D depiction
of terrain can be improved by increasing the resoiution of the terrain data. This
shrinks the size of the near view terrain polvgons making them seem more natural. In
adaition, the terrain display could be made more realistic by adding "features” such as
roads, structures, lakes, and vegetation. Winn and Strong [WINN&S§9] have demon-
strated a terrain drawing system that, utilizing IRIS hardware support, increases the
terrain resolution, helps realism through better shading techniques and boosts perfor-
mance. They also developed a real-time line-of-sight system that could be useful as
a alternative or additional cost function for nath planning. Adoption of a standard
graphical object definition language such as Fixar's Renderman or Object File Format
(OFF), the language developed at NPS [[AUNSONS89] would create access to a
large library of realistic images of platforms and other objects.

Vehicle realism could be enhanced by including the following features:

» Multiple gear transmissions.

» Realistic slope effects.

* Sound.

« Different model constants by vehicle type.

* Adding vehicle stability effects; i.e., tum over or crash.

» Energy’Fuel consumption.

86

]

c. Increased Capability

APS is currently limited to preprocessed terrain data for one 35
square kilometer urea of the world. Drummond and Nizolak [NIZOLK&R9] in FOST
modified the original MPS terrain representation system to accept standard format
DTED files, available for many parts of the world.

Additional path planning cost functions, such as exposure to enemy
observation, energy or fuel consumption, tactical maneuver advantage, etc., could be
used as alternate or combined figures of merit to evaluate the quality of the product of
the path planner in differing environments.

The trafficability model could be expanded from a simple function of
slope magnitude to consider soil conditions, vehicle traction, and anisotropic slope ef-
fects such as those contained in the vehicle-terrain interaction model of Ross
[ROSSE9].

The unimplemented simulated vision svstem. planned to provide in-
put on local conditions to the obstacle avoidance system, was modeled after the laser
terrain scanaing system of the Adaptive Suspension Vehicle [BIHARI&SK9: pg 61).
There 1s an interesting interaction between the range and resolution of the vision svs-
tem. the speed of the obstacle avoidance process and the maximum sate speed of the
vehicle. Simply put. the vehicle cannot safely go faster than its sensing and naviga-
tion svstemn can react and respond. Were local obstacles and obstacle avoidance im-
plemented, this simulator could be used to compare the overall performance of vision
systems by varying the sensing system parameters: range. resolution. field-of-view,
and speed; and then navigating real terrain.

d. Performance

Vehicle performance in terms of frames per second is of concern in the
vehicle simulator only insofar as it effects realism. Other researchers at NPS bhave
looked specifically at performance and found no magic algerithm that promises orders

of magnitude improvement due to sofrware changes [FICHTN&SS]. Th.t does not

mean that performance comparisons are unimportant or that efficicncy can be ignored,

simply that performance is not directly germane to this research.

4. Path Planner
Two key research goals of the path planner used in this thesis were first,
to provide an easily understood interface between the vehicic simulation and the path
planning algorithm, and to provide the mechanism whereby search algorithms could be
easily interchanged at the control interface level. This implementation of the path
planner is a prototype that needs to be refined and expanded. Aieas of research :hat
would provide significant improvements on this study are as follows:

* Incremental route planning
» Selection of route planning algorithms depending on requirements
+ Comparisons of expert system shells

» Comparisons of search algorithms usiny real terrain data and simulated vehi-
cles

+ Improved communications

a. Search Algorithms
The wavefront search algorithm used in this studv is well understood
and provides a standard by which other search algorithms can be judged. There are
many other algorithms available that provide capabilities unique to each. The decision
to use a particular search algorithm may be based on the constraints of the path and
mission. An area for further study is to select appropriate search algorithms. depen-
dent on the terrain and mission to be planned. Another area of study is the use of a
preprocessing algorithm that would allew the vehicle tc start clong the path before
the path is completed and still get reasonable results.
b. Expert System Shells
The path planner was implemented in ART which provides a high lev-
el symbolic programming environment that allows predicate representation of rules.

This representation allows the path planner written in ART to be understood by any-

88

one who has a grasp of predicate logic. ART however is not currently supported on
the next generation of Symbolics workstations. nor is ART code easily converted to
some common langnage and then transported to some other LISP machine. This last
area of research is particularly interesting as graphics machines are beginning to in-
corporate LISP processors as an integral part of the architecture.
c. Communications

The path planrer has not been able to keep up with the vehicle simu-
lation. There appears to be a problem with the buffering of messages in the Symbolics
workstations. The path planner could also be improved by the addition of algorithms
that would check for the most recent update message instead of filtering down

through the messages that have arrived and backed up in the buffer.

C. SUMMARY

APS provides a testbed for the swdy of real-ime path planning and control
strategien 2nd algormithine without the cost of building actual hardware. It serves as a
bridge between the theoretical study of a simplified abstract problem to applied re-
search producing concrete performance under realistic conditions. The conclusions of
this study show the feasibility and aavantages of such as system in settling perfor-

mance debates with empirical results.

&9

APPENDIX A. VEHICLE SIMULATOR MODULE DESCRIPTIONS

A. DATA DESCRIPTIONS

Data structure definitions and program constants are contained in C "header
files" which normally have an "h" suffix. A list of all APS header files is contained in
Table A-1. The main data structures used in APS are contained in "aps.h” (Figure A-
1) and "weapons.h” (Figure A-2). Global variable declarations are contained in

"global.h" which is included at compile time in the APS main module "aps.c”.

B. MODULE ORGANIZATION AND PROGRAM CONTROL FLOW

The top level APS function main() (Figure A-3) is contained in the file "aps.c”.
This module inttializes the system, runs the simulator by calling event(). and cleans
up during program termination. Module event() (Figure A-4) initializes the
simulator, displays introductory screens, gets a user selection of a 10 Kilometer area
t0 wOITK 1n, handics e nain uenu selections and calls either of the two main drawing
loops: event_driving() (Figure A-5) or event_flying() (Figure A-6). If the user
selects RETURN TO MAIN MENU from the driving menu or the platform he is
operating is destroyed, control returns to event(), the 10 Kilometer 2D map is
displayed, and the main menu is presented to renew the cycle. If the user seiects
EXIT THE PROGRAM from the driving menu control then the program is terminated
by returning control through event() to main(). The remaining modules contain
functions which are either sub-packages under one of the main routines or general

support functions that are called to do some task from seviral places. Thcsce

modules, the functions contained in each one, and a brief description of what they do

are listed in Table A-2.

TABLE A-1 APS HEADER FILES

aps.h
Cobra_data.h
Cobra_inside_pt.h
color_scheme.h
controls.h
event_status.h
files.h
flamedata.h
global h
gundata.h
jeepdata.h
legend.h
lightcons.h
lightdefs.h

macros.h

Main_rotor_data.h
math_utility .h
missiledata.h

Mrotor_inside_pt.h

network.h

Main global data structures and constamts.
Cobra object data.

Object data for Cobra inside view.
Program RGB color array indexes.
Constants for controls.

Main loop state definitions

Svstem data file names

Object data for wreck ‘buming jeep flames).
Global variable declarations.

Tank main gun object data.

Jeep object data.

Positioning constants for legend windows
Material definition constants.

Lighting array declarations.

Copy of system header file that defines C

macros without bug.

Object data for Cobra main rotor.
Math_utility function prototypes.
FOGM objcct data.

Object data for tip of main rotor seen from

inside Cobra cock:

Network message de.. .ters, types and

formats.

Q1

TABLE A-1 APS HEADER FILES - CONTINUED

network_services.h
openjeepdata.h
pathdata.h
pathfunch
popups.h
rollerdatah
Rotdat.h

Tail _pipe_data.h
Tail_rotor_data.h
tankdata.h
terrain.h

tiredata.h
Tpipe_inside_pt.h
trackdata.h
trackdata2.h
Trotor _inside_pt.h
truckdata.h
turitdata.h
vehmodel.h

weapons.h

Network function prototypes.
Open jeep object data.
Path data structures definitions.

Path function prototypes.

Popup menu names and retum values.

Tank roadwheel object data.
Cobra rotor rotation rates.

Cobra IR suppressor object data.
Cobra tail rotor object data.
Tank ohject data.

Terrain 3D display constants.
Wleeied vehicle tire object data.
Cobra IR suppressor ohject data.
Tank track object data.

More tank track object data.
Cobra tail rotor data.

Truck object data.

Tank turret object data.

Platform motion modeling constants.

Weapons system data structures and

constants.

P B
#include

"gl.h"

#include "fmclient.h"™ ., * inherit font manager
#include "pathdata.h"
/* pathdata.h required because there are ptrs tc paths

data structure.

*/

#1fndef NULL

#define NULL 0
#endif

for manipulating the terrain data file *
Q

~

th

£f

[

) ¢

e WP 1

* defines for polygon computationes ¢
$define X 1 * X zocrdinate ¢
#define T 1 , YT -
#define T 2 /*2 *,
g#jefine L O J* LOWEPR triangle *
$#define 7 1 * DEFFER triangle *.

definitinns

* defines f£2r polygon crientaticn
$#define MAXICIFDS 80

#define MAXLOOKDISTF 3z2808.0

,* define maximum size for pickbuffer */
#define PICK BUFFER SIZE 512

/* define default range for rangefinder

* -

#define RANGE DEFAULT

2999

Figure A-1 APS.H Main Header File

/* defines

#define

#define

for conversicns */
0.447039
0.3048

TO _MPS
FEET_TO_METERS

/* defines for useful constants */

#define
#define

#define

#define
rdefine
#define
#detine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define

#define

ids */

#define

#define
#define

TENTHKM 100.¢C
TWOTENTHKM 200.G
HALF KM 500.0
ONEKM 1000.0
TWOKM 2000.0
TENKM 10000.0
MAXLZORLDICT 8042.6 % £242.€ meters = 122707
MAXELEV 11324 J* 1124 meters = 2720 [e=
MINSLEV 0 + 0 meters = 0 feer *
NUMAGERIDS 100
NUMZIGRIDS 100
¥_DATA_PTS 101
I DATA_PTS 171
TANKGNDHT 1.€612
TRUCKGNDHT 1.€67€64
JEEEGNDHT nLERsT
OFENJEEPGNDHT Q.eQc”
TOWGNDHT 1.0
ATKHELHT 1.0
MAXTVEH 299
taximum number <f LOTAL platforms allowed
MAXVEH_NUMBITS 10

room £

/* Number of bits tc shift hcost id to make

VEHID_ MASK OxFFFFF

/* Mask to get positive local base platform id */

MAXDEFAULTS 9
FOGM_INIT HT

Figure A-1 APS.H Main Header File - Continued

94

/* defines for miscellaneous trig cperat

#define QTP _FI
#define HALFPI
#define THREE QTR FI
#define PI
#define FIVE QTR PI
#define THREE_HALVES_FI
#define SEVEN QTR FI
#define TW.LPI
#define RTOD
#define RTOD_X 10
#define DTOR

* defines for curscr

ARROTW

#define

#define

TANKCURECP
BURALES SSMAS SRCHRS 24

JEEECUEST

-
e

/* platfcrm types */

#define
#define
#define
#define
#define
#define
#define

NITMVEHTYFES
TANK

TRUCK

JEE®

FOGM

WRECK
CEFENCJEEE

0

1

]

.785298163
.870726327
.35%619449

[¥V]

W

Lty VO

(9

wun

i1:ns

-

Figure A-1 APS.H Main Header File - Continued

#define TOWVEH
#define ATKHEL 7

/* upper limi% on weapocon types per platform */
#define MAXWEAPONS 2
#define MAX RDTYPES PER_WEAPON 2

’

/* defines for the a.rows drawn on the 2D terrain map *

#define ARROW_LENGTH 30.0
#define ARROW_WING_LENGTH 10.0
#define ARROW~WING_ANGLE 25.0

/* defines for window ids */

#define BILLBIAFRDWIN 0
#define MAFWI! 1
$#define MENUWIN 2
#define NAVWIN 3
#3afine INDWIN 3

* ~Twerdraw ccolor defines *
$define TLEAFTVERLFRAW ¢

$define BLAZHOVERDRAW 1
#define REDOVERDRAW 2

#define BLUECVERLCFAW 3

‘* defines for networking */
4define FATKET 31CE S12

SEREE A Data type definitions EE L

typedef float time £; * time, in floating pcint seccnds ~

/* enumerated variable to indicate which viewing mode dri-—en wvehicle

is in */

typedef enum { ncrmal view = 0,
driver,
tincculars,

wpn_sight } View_mcdes ;

Figure A-1 APS.H Main Header File - Continued

96

;% Def ‘numerated type for alobal wvariable o indicave irrerns
plar :m control mode
.
typedef enum { MANUAL = 0,
AUTCPILOT } Control type;
typedef enum | LOCAL = (', NET } Vehowner: * Trigin ~f plarfom,
1ooal o netw k. *
typedef enum | OFF = 2, ON |} Toggle; * Indicates whether
somethiny 1s -0 cr 6t -
* type definitions for platform ldara stratare *
- ypedef struct vcehicie |
int net 13: * PLATEORM IT NUMEEF F F NETwW FFIN FUTREOTTe
short pitk 14 ~ F1 ¥ ID W'MREF FOF TARIETING: FR: 0F *
Vehowner -wner ‘* 1ndicates whethe:r platf rm 13 1--3al ronet *
Trntrll o type Coint:ro 1o o Indiyoares how o thiis plarttorm oo b el
1ew m-ies crlew mocie; *Indlcates desire] lew fromw et e -
Toauale ext guidance; * Indizates whether external gJuliance
PN 2| 1 FE. ¢
Traale rec pathy * o Inirrates whethe: inocoming g dept oo
shosldi re zided s el1etiny path ot
Booolean send updare: * Flag inly arting whether gy iave =h 11
Le sent 1t ser netw.ork £ fthos
platf m
»
short v ;* PLATFCRM TYEE *
Coord b '* X TFANSLATIUN *.
Tcoord ¥ ,* Y TRANSLATION *
Coord z; /* Z TRANSLATION */
double utm =,
utm_y; 7* UTM Cocrdinates of platform to meter *
flroat cse; /* veh heading, (rctation about Y axis)
from positive X—axis, in radians. Must
*

I,

be ccnverted to compass degrees for

Figure A-1 APS.H Main Header File - Continued

97

flean cmdeose; * Tesired (directed) vehi-le oCourse *
float turnrate; ;" psi doe - cCurrent turning rate

flcat omd turnrate; * desired psi dot - either manually 1:;oue

g or cCal:culated

t
jo
[
[»]
I
«Q
jog
[
N
o9
o3
o]
Q
O
O
=]
ot
=
o
—

when change of course received from

remcte ccntroller.

-
y
flcat Fase pitch: * weh pitch (tilf) arcund I axis, due o
slcpe
N
flzax trans pitchy * transiert ehicle pitch ffser due to
arrelerarion, wvehi-~le broun-e, er~
£loar tace -2 11: *oveh 21 an3zle, arcand Moaniz o otanty, e
T. S..p 2
.
€1 A frans o 10 *orrarngiernt whocle 0 D0 andlale bt ezt
torte when rorroiiny
flcar bounce amplitude: *amplaituie of platorm pitch cs-1llati-ns
Cl.a% toanoe coLme *oacoamalatel ot ime Inoge Sinoce b e
£l ax NLnac; v
£lcar wynele-w; *
£lzat vi=wan;
£1 a3+ wiewele; -
£loar cel: *
£ a* . -
*

y setting the throttle —-ntrol at a
sevtina. A pceitive difference —mivel - el

means acceleraticn and a negative difference
means ~oasting tT new lowe

r
A nejative value for zZmidvel 12 interprete]

Figure A-1 APS.H Main Header File - Continued

0y

as a braking facttor, range -1.0 <= -+ - 7.f

flcat ale; /* ALTITUDE IF IT IS A FOG-M MISSLE *
Bececlean track _flag:; /* IF TYFE IS A GROUND FLATFORM THEN *,
S * FALSE = NOT BEING TRACKED */
S TRUE = IS BEING TRACKED */
/* 1F TYPE IS A FOGM MISSILE THEN */
S * FALSE = NOT CURRENTLY TRACKING */
S TRUE = IS TPACKING >
struct wvehicle *track; /* IF TYPE IS A GRCUND FLATFORM THEMN */
/* IT IS A PQINTER TO THE FOGM, CTHERWIGE */
;* 1T PZINTS T2 THE GROUND PLATFTPM *,

* WAFNING: Follooing is ANSI C "incomplete gtracture defipition" of
emru o ware sintained in weapons.h. Such fo-ward declarations MAY
noto o be suproirted in non-ANSI T compilers.

.
srruzt weaptn_record Ywpnptr [MAXWEAFDHE]! * AVAILAPLE WEAD NS
seract wearon record Twpn selected © O TUFEREENT WEAD ONOC

v Fo_lds .nvaining pointer t: asscociated path and the urrent

Julide point teinz used £2 navigate vehitle,
-
ELTH *rath;
ETHTLE taziderpt
swritL o vebitle *next; . ¥ NEXT NIPE IN THE LIST *°
' ehi1Tle
Totyre iin f£0r frred weap:on event ¢
type lef {
ins firer id;
Loord fired x, fired y, fired z:
Tozx tgt _x, tat_y, tagt_z;
flcat wpnaz, wpnelev;

| FIEE EVENTS;

/* declare extern functions (alphabetical order) */

extern flcat arcsine () ;

Figure A-1 APS.H Main Header File - Continued

90

extern fluat calc_distance(Cocrd =1, Cecrd yl, Tocrd z
Coord x2, Cocrd yZ, fCoccrd z

extern woid center_string_map(char *str, long linenum
extern vcid center_string_menu(char *str, long linenum
extern flecat compass_degrees_to radian_angle(float deg):
extern float convert to_dec hr();
extern short convert _to_hr min();
extern time f elapsed time wreset (veid);
extern Vehicle *find_platform(int netid) ; ‘* in
check_fcr packets.c */
xtern flcat gnd_level{ Ccord =, Coorxrd z)
extern mcusescreentcoutm(short sx, gshort sy,

double *utmx, doukle *utmy,

shirt mcuzew)
extern mousentmtroscreen(doukle ueomer, d-ubkle utmy,

sheoxt *sx, short *sy,

short windowi
ERAE-S ¢ mousestmt xrerraint doukle watrzr, doable utmy, £1 a0t
T
entarn moaferorvzains cutmy float v, Eloas vz, dogble fieon
Tatmy)
2atern L1 a% railan angle +. _compass Jdegreest £1 3t ang
entern “aime f r=ad simtimer ()
extern floatr restzict angsle <o first re-wclutizne f1oas

* radians only *
exvern f£l-ar sinzoef flzat anale, floa* *2osine
exntern ‘ehile tswitch veho);
antern shonv wehi):
extern sho ot
excern doulble
extern double
* declare —very cowmon global variables */

extern <Vehicle *vehlist, *vehlistend, *driven:;
extern Booclean networking;

int color scheme index:

[N

5
<

y -

Figure A-1 APS.H Main Header File - Continued

100

T

extern int guidance_signal;
extern float eye position[NUMVEHTYFPES)[2]);
% offser of eye from center <f -reh *
extern 1long centerx, centery; . * gs:creen <cocord of cente- of MAPWIN */

extern Boclean control ccnnected;/'* flag indicating remcte process is

connected to server.,

/* Font handles - Initialized in initiris =,

extern fmfonthandle Helv, HelvB, TimesPm, TimesRmB;

extern fmfcnthandle scaied TimesPm, scaled TimesFmE,
scaled Helw, scaled HelvE;

/* Make UTM coordinates of lower left —orner <of 10 KM b alokal *

extern dockle LL menkmutm I, L tenkmatm vy,
UFR tenkmutm i, R tenjmuim o

,* Zccrd of Lower left cf zoomed boon v

extern d~ukle zoomed LL 2, zoomed LI

Figure A-1 APS.H Main Header File - Continued

D R . 2R A I R R N R R E EREEEEREE R E I I I e E T
AR R . IR ~ -
NAME : weapons.h

CALLED BY

CALLS

MCODIFIED 12 14, 88

FEFSCH : Bill Tetex

FURFOSE : CTontains reccrd and tyre definitiins for weapons,
ammuniticn types, and sight retic-les £:1 weapd<ns gystems. "'ses some

Pl
types from MFS.

LA SR S 20 K IR O O 2 2 2R 2R 20 2R IR B AR 20 2R R 2R I 2R 2 2R 2R 2R AR R A I I e R SRR S IR R T IR AR TR TR R TR R S

J**** Sight Types **»**
#define NORMAL c
#define MITANK MG 1

Figure A-2 WEAPONS Header File

101

#define BINCS 2
#define TOW 3
#define DRAGON 4
#define IFV_SBT 5
#define IFV_HEI 6
#ueline ITV_TOW 7
#define COBRA TCW 8
#define COBRA 20MM 9
#define APACHE HF 10
#define AFACHE (S 11
#define TANKFIFE_‘INTEF.'.'AL 6,0

* Relcad time for generic tank system *
.t Cefine F.V andd ASEFRIT %o =et perstective when dete~nrirna ha

pitking. *.

$define RITHD FV 2

* 2 degrees or € mils *
#define EIUND ASFETT n.R
#define SFLASH DURATION 4.0

* Hew long te display target miss ground splash *

#¢4efine FIRINT TEL INC 100.0

* Fange increments in firing takles *
$§define FIFRING_TEL_LENGTH i0

‘* Number of entries in kallistic takles *.:
+yredef struct worldcoccord 2D | flocat =,y: } WIDCPDO:
typedef struct worldocord 3D fleat x,y,z; } WIOOFRL X
typedef struct screencocrd { shert i,y } VCZOCRD:
typedef shcrt Colorvector S({23];
typedef long Colorvector L[3];
typedef float Colorvector F([3];

o

Figure A-2 WEAPONS Header File - Continued

//*k ___
- Define recc:d fcor class of ammunition <r type of round --
B it et T o e e +
} trajectory_type (ENUM) }
e e e e +
| warhead (ENUM)
e +
| round name (STRING[1(0]) |
e e e e e +
! speed (meters’sec) f
o +
| minrange { meters }
e +
| maxranje { meters !
e e e e e E e, —— ———— — +
»
typedef enum gdtyre BALLIZTIC, ZUICED I35) TYPFE FLIGHT
typedef enum amms_type { INERT, CHEMICAL, NUKE, FASCAM,
SUBRMUNITION U TYFE WAFHEAD
tvpedef srrutr munition_tyre
TYFE FLIGHT trajettory type; .Y type >f trajlectory ¢
TYFE WARHEAD warhezd; S* type of warhead *
~har rcunj*name{lO}; * string name <f munit:in *’
fl-ar speed; . * meters,second ¢
float minrange, ,* minimum arming range
maxrange: * maximum ei{fective range *
flecat ballistic_table[11);
} MUNITION CLASS;;
e e
-- Define structure for sight reticle -

Figure A-2 WEAPONS Header File - Continued

103

o e e —— e ——————— — +

| type '

A +

| name - STRING

o e e e e e e +

] magnification |

o e e +

| numlines - # lines in reticle !

o e e - +

| lines --> HAIRLINE (array) |

e +

i safe light

o +

| ranqae posn (posn of range string) |

e e e e +

| reund pesn (posn of round string)

b +
tyredef int THAR FIENIZ): * M,Y tuple defines <rigin _f tenr
/* Lower left and upper right, dimensicns of a re:tanale *
typedef struct rect type I

fleat 11 =, 11_y, wur_x=, ur_y:
} RECTANGLELL;
typedef struct hairline record { * reticle hairline start - end
fleoat start {2}, end{2];:
I HAIRLINE::
typedef struct reticle reccrd
int type:; . * code fcr type cof reticle *
char name([10]; ,* string ccntaining weapon. reticle name
short magnification; /* normal magnification cf sight *,
int numlines; /* count of number of hairlines in reticle
HAIRLINE *1lines; /* pointer to any array of HAIRLINE
RECTANGLEZ2L safe light; /* rectangle coocrdinates for safety light
CHAR_POSN range_posn; /* origin of range string */
CHAR_POSN round posn; /* crigin of round name string */
} RETICLE;

-

-

-

’

« -

.

v

Figure A-2 WEAPONS Header File - Continued

104

N
-~ PLefine structure tc represent fired rcund while in fliuht -=
__ -
typedef struct RIF_types |
WCOCRD3 fire posn, /* locatior of platform when
round 3 fired. */
posn, /* locatien at last update */
pt_of_aim; /* werld ceoord pt of aim */
flecat fired range, .* range data used when fired */
fired dist; /* current distan:ce from pt where
fired *-
float angle,
elew;
vehliole tfirer; *optr Lo oplarformontar fireld
the r-und*
MUNITION CLAZSE *anune > rype of poand 0
) RUUND IN FLIGHT;;

P e
—-— Define structure for ~lass 2f weapon systems There will be -
-- cne £ +hese reccrds for each tyre -f weapon system. -=

- +

name — ITFINS

e +
I sizhr —-=> RETITLE !
A e +
| releoad time { “ime |
e +
| ammo_types (array of —-> MUNITION CLASS) i
e +
! basic_leoad (array of int)

o e~ +

.

Figure A-2 WEAPONS tieader File - Continued

105

typedef struct weapon_type |

char name (. 0] ; /* name of weapon sys, ex: MlTank MG *,
RETICLE *sight; /* sight picture used for this weapcn type */
time_f reload time; /* Minimum time between firings */

/* Array of pointers to posible munitions for this weapon sys */
MUNITION_ CLASS *ammo_types[MAx RDTYPES FER WEAPON];

/* Array heolding starting quantities for avail munitions */

int basic_load{MAX RDTYPES PER WEAPON];

} WEAPONS:
A e e o v e e . ——— — o ——— —— 1 —— o —— — o " . 2 o o Ao o e o e o o o e e
—— Define st:ructure tc represent weapon gystem carried by a -=
-— platform. -=

e +

| wpn class —-> WEADPDONG |

e e e e == +

| range readinzy

o +

| safety cn (refire FLAG) I

e e +

| round_select --> MUNITION CLASS [

o e - +

| last fired (time) |

o +

| rounds remaining{) (array by type round) |

e +
*/
typedef struct weapon _record { /* instance of weapon */

/* clagss variable */

WEAPONS *wpn_class; /* ptr to weapon type record */

Figure A-2 WEAPONS Header File - Continued

106

/* instance variables */

fleoat range reading; /* current reading in rangefinder *

Boolean safety on; /* flag whether weapon safety is on or off */
/* ptr to selected round, type of munition currently selected */
MUNITION_ CLASS *round select;

/* time system was last fired, 0 if never fired. */
time f last fired;

/* array of rounds of each type of munition remaining on platform */

int rounds remaining[MAX RDTYPES PER WEAPON];
} WEAPON:
,' B e e e - e . ————— = — e = e e - T ——— —— . —— f————— o —— — - =~ ——— — ——
- Define reccrd structure fcor timed ewvents -
e - +
| delete (FLAT
e ————— e — +
| start time tortime
Bt e e +
| last _urpdate (time) |
Uy +

| next _event —-> event |

| wvariant C TMNION) |

/* Record for event wvariant part to reset something on a weapon after
a certain amount of elapsed time. */

typedef struct weapon_timeout |

time_ f duration;
WEAFDN *wpnptr:

Figure A-2 WEAPONS Header File - Continued

107

) WEN_TIMEOUT;

typedef struct msg_type |

time f duration;

char message (40];

} MESSAGE_TYPE;

typedef struct splash record ({

]
9]
(8]
y
[ON
b
&
+
=
jog
M
H
<D
ot
[§]
[S%
H
Y]
%
Lo
(D]
[t
3
VL
4]
oy

typedef struct flach record |

short colozrnum;

vehizle *hi*wvehicle;

typedef struct | . * FPecord frr venaicle "bounce" *.

“ehicle *-—ehptr;

Hh
b—
o
Q
“*

counce amplitude:

} BOUNCE EVENT;

typedef union typre_events {

ROUND IN FLIGHT round aloft;
WEN_TIMEOUT wpnt imeout ;
MESSAGE_TYPE letter;
SFLASH_EVENT splash;

Figure A-2 WEAPONS Header File - Continued

108

FLASH_EVENT fiash;

BOUNCE_EVENT bounce;

/* add other timed event types here */
} EVENT_UNION; /* end union */

typedef struct event record ({
Bcolean delete; /* Flag indicating expired ewvent */
time f start_time, /* time event was initiated *,
last update; /* time when event was last
updated */
int (* precess_event) (struct event reccrd *);
* pointer to function to handle this event *

a-ruct event reccord *next event;
EVENT TNION variant; * -warrant part °f rec-ord ¢

CVENTS; * end struct event reccord *.’

-- DTezlare gl:kal variables to contain the walues fir actual --

-= WEAFJNS, RETICLE, and MUNITION CLAZS <lasse -=

extern WEAF N3 ml tankma sabot,
ml tankmg heat,
bincs c<class,

tow tlass;

extern FETICLE mltank gunner retircle,
bincs reticle,

tow_reticle;
extern MUNITIZN_CLASS ml 105sabot,
ml 10%heat,

tow_standard:

extern WEAPON kinos;

Figure A-2 WEAPONS Header File - Continued

109

INITIALIZE

RUN

TERMINATE

getpath
ecode_arguements
define_cursors
intiris ~
sotcolor_initiatize
billboard
light_model
intt_months
makeapopups
load_paths

event

cleanup_on_exit
exit_simulator

Figure A-3 MAIN Module Program Flow

110

(Display Intro screens,
display 35 KM map, &
select 10KM area)
display_big_map
draw_box_around_current_area
do_select_area

|

(Inltiallze to 10KM terrein data base)

read_data
calc_ground_plane
maketerrain
mnitialize terrain_mat
terratnnormals

l

(Display 10KM map &
dispatch main menu operations)

display_legand_for navbes

display_map
mapoverlay
display paths
4o mam (Main menu optlons)
gvent_driving event_flying

Figure A-4 Module event() Control Flow

111

control input loop

handle network input

update guide points and controls

updata vehicle model for each platterm

update vehicle posttion tor each plattorm

draw 30D view

send network update messages

set_queue
setcontrols
de_driving_menu
setup_for_driving
handlecontrols

check_tor_packets

autopilot

update_veh model

update _veh pos

siewbounds

display _nav
display_firebox
display _mdbox
dramarrain
display_data
display_tracked data

network

“igure A-5 Display Loop in event_driving

control input loop ;

hand'e network input

chart f FOGM tracking a target

update vehwie postion for each platorm —-—{

draw 20 view '

sand natwork update me<sacas

set_queue
setcontrols_togm
do_flying_menu
handlecontrols_partial
handlecontrol_ré)gms

check _for packets

handle_tracking!

update_veh pos
tewkounds
update_look_pas fogm

display nav
display_mdbex togm
drawterram

displa, _data

diepla, slider

network

Figure A-6 Display Loop in event_flying

R

TABLE A-2 SUPPORT FUNCTIONS

addflash.c

addmessage.

addsplash.c
addveh.c
aps.<
arcsine.c
autopilet.c

calc eye -ffcen.c

1 v Tane
3l I L -ane
3l7 L.k parameters

N

check for ratkets.c

check rcund in £light.

clearwindow. <

cobra normals.c

c>1lisicn detecticn. e

Adds round impact flash event to che
event list

Adds messaqe display ewvent +o evenr
list

Adds round =rlash event + . event list
Adds platform

Main routine

Feturns arcsine -f input parameters
Computes course and speed for
platfcormis)

Cisplays rotasing Lillicard orreen

Zvmputes ¢scoillation bae t terpaln
irreaularities
Tontains low-level network routinec

£ Froadrcast mezsanses

Jalrculates world pozition £

Fiare a:x quand yplane anis: terra:xn
Lew
e

ir. an array

frzitions curscr in the - e T 3

window

Frints a tentered strint in the AL

Frints a 7Tenteredi stvring
window

Handles the reception and pr tessing
cf network messages

Updates rcund position, handles

rcund impact with platform or ground

Tlears a window to input =

or

Calculates ncrmals for obra
heliccpter

Detects collision between any two
rlattforms

Tomprutes the glope of a line

Computes information for o drawteriain

114

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

compute sun location.c

compute x bcunds.c
compute =

bounds.c

convert tc_dec _hr.c
n

vert to hr min.c

C
e

c
deccde_arguments.c

digplay firebo o
disrias 1on.T

display intzru coreen.c
diztlay levend £ big

disglay ledend £:r navwb
di=play magp .«

1splay nav.c:
display slider.<
digrlay tracked message

Computes sun (l1ight

Lased on month and hou
Computes x

drawterrain

sourece) loo

r

drawing limit for

Tomputes z drawing limit for

drawterrain

Converts to decimal

hour

Converts to hours and minutes

Handle command

aps 1n started

Sets ap tursgor shagpes

Ieletes 3 platfrm ani
2o

r
b
‘N

o

line argquments when

Tilgsplays Turrent syshem farameters
£ user
_onverss f£loatinT poLint fe S S

with weapcon system act
Drsplays all vlasform
[izcplays moiuse legend
without weapson syshtem
Cisplays mouse legend
platf.orm

Picplays proaram ins+e:
Tisplays color araldat:

e a
Displays
z¢olored 2D 10K map us
rlanning
Draws 17KM D map
Craws blue
view limite
L:rsplays tracking cont
plazfcrm

Displays “rack:ing

“reen

al o¥al

Sourse arrTw

fir rlaform
ive
4 - oo

W
I
b
D

h

.
v
-
2

8
t)
ot
9
e
"0

bes
O

tor s

'Feu
=1 for path

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

do_capture.c

do_change_speed.c

do_char.c

de driving menu.c

do flying_menu.c

do main.c

do main reset.c

Jdo_patheps.c

do_quitting.c

12 *he dafaglés =
de the delete.c

do_the select.:

draw_box_around current area.c

draw_ceckra.c

draw auidept.<

Handles storing platforms into data
file

Allows user to set the speed of all
platforms

Pisplays a character in file name
window

Displays driving menu and handles
selection

Displays flying menu and handles
gelecticn

Handles selecticn €< display

(>3
™
7
¢
Il

instruction window

Builds and disglays main menz and
handles selection

Zlears all windows an? displays ZU
te2rrairn mag

Ruilds an

(O
o)
"
(5
T3
P
w
L‘:
W
T
[
't
5
o
oy
o
1A
W
[
Vs
0
jo}
0n

menn and handlesz zelecti-nz

ny menu

Handles resize selecti_n from any
menu

Handles menu selection of a 17¥M

cperaticnal area <n the 2%¢¥li map

Handles menu selecticn -

L))
w
o3
o3
o
o
R
Vi)

platform

Handles menu selezrion ~f aiiing a
default set <f platforms

Handles menu selection cf deleting
one or all platforms

Handles the selection of a platform
Draws red box around current 10N
area on large wap

Draws the main bedy <f the attack
Lelicopter

Praws a auide pcint as a marker on

the terrain

116

r----------------.---.I-----I--I-.------::f

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

draw in cobra.c

draw main rotor.c

draw_prcjectile.c
draw reticle.c

draw_tail pipe.c

draw_tail retor.c

Trawl.oames O

drawflash.<

Arawgridb-xz.c

drawgun. 2

drawr<ller.

drawzplash. o

drawtruck.c
drawturit.c
drawwreck.c

error handler.=

event ,C

event _driving.c
) event flyinz.co
a:

3

t

simula*-x .7

Praws the ccckpit framewirk when
locking from inside the attack
heliccopter

Draws attack heliccopter main rotor
klade

Draws round in flight

Praws weapon sight picture

Draws attack helicopter IR suppresscr

Draws attack helicopter tail rot-r

Prawes flame from ta:il - FIZM
Draws flash when round impacts a
rlatform

Draws a box in the map wini w
Iraws the tank lLarrel and ' ~:re

evacuator

fraws the ! . n £:r ea h tyre F
plarform

Praws the Heep

Craws the FoOGHN

[iraws the open Jeep

I'raws the tank rollers

=1

raws the

G

rcund splash when 3
rrojectile Impacts the aroundd
Praws the body ~f the tank

Main terrain ani platform drawing

Le

[

{raws a4 4
Craws a tank track

Draws the truck body

I'raws the tank turret

DPraws a burning wreck
Centralized errnor handler, 1iust

prints error mesgsage and returns

s

Main drawing cycle dispatch routine
GSround platform drawing cycle
FOGHM drawing -~ycle

Tleans up ~n e:xit

117

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

explesion.c

fire blast.c

fire weapon.c
flamenormals.c
gen_wildman defaults.c

get curr fps.c

get_mouse_xy.c

get name.cC

gnd_level.c

gnd_level UTM.cC

Q
o
-
[9%
W
o]
9]
]
(8}

qunnormals.
handle ~zrash.c
handle events.=

handle_tracking.:

Tntrois.c

handle:z

highlitegraid.c

init fonts.c

init months.c

init network.c

init weapons.cC

initialize *errain mat.c

Flashes screen when current platform
is destroyed

Flashes screen when weapcn fires
Handles weapon firing

Computes normals fcr the FOGHM flame
Generates a defaul+r set of platforms
Calculates current drawing rate in

frames per seccond

Gets current lccation <©f mcuse curscor
2pens window for user %o enter file
name

Jcmputes ar-und level ©f inpat worls

coordinates
Computes ground level <©f£ ingput UTM

~zrordinates

n
driving a ground rplatform

Handlez dial inputs when flvina the
OGN

Handles mcuse inputs when f£lying the
FoGM

Highlights the 1 X 1 KM graids th

a
czntain any plarfcrms for z-oming

Initializes fonts and scalec them to
windcw size

Initialize month and lighting

2et up netwcrk scckets and stream
server connection gqueue

Initializes any weapon systems cn
brard a platform

lefines materials for terra:in
polyaons kased on current 1 mag

L8

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

initiris.c Initializes graphics system
initveh.c Adds platforms from a file
jeepnormals.c Computes normals for a jeep
letter.c Draws a letter on the billboard
light mcdel initialize.c Initializes lighting model and

lighting viewer definition

lightdefs.c Definegs materials, and
lighting model

limit cursor pick.c Limits cursor for targeting attempt
by FOGM

limiv walue.c Limits wralue hetween and lower
koundg

l-~adanis .= Loads the stard

makercpups.c Builds static

maketank. < Builds polyaon arrays for tank

nakernerralin.c Fills the terrain elevation and
“errain pclyacn ncormal ays

maketrack .o Makes

mapoverlay.c DPraws the rla n the 2D
1oEn

math utility.c< Fackage <f math utirlity functicons

miscsilenirmals. Talon | BRI Ot
missi

mousegsreent Jutm, o Zonverts coridinates
te UTM cocordinate

moucestreentowoirlidl o - 1nares v
world graphics

m-useterraintcutm.c Converts from 17KM coordinates tc
UTM cocordinates

mouseutmtoscreen, Converts from ITM cocrdinates to
point on the screen

m-useutmtoterrain.c Converts from UTM coordinates to
10EM coordinates

m-ouseworldtoscreen. Tonverts from 2D werld ~ocrdinates
to screen ccordinates

net stream services.co Fa~kage containing routines +n
manade stream ccnnect s

rietwork . o Buil-ds messaaes and s them

119

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

network_IO.c

normalorient.c

npoly orient.c

obstacles.c

openjeepncrmals.c

path.c

placewindow_sizes.:

placewindows.

9]

ring the bell.
rollernormals.c

select an area.c

select grid square.c

select sight.c

set driven view.

set poprup colcr.c

set Jgueue.cC

0O

Fackage of message level network
communication rcoutines

Ccmputes normal and recrganices
vertices cof polygons

Orients polygon wvertices for
backface method of hidden surface
removal

Stub mcdule for obstacles package
Computes normals fcr open jeep
Fackage c¢f rcutines t< manage paths

Sets aspect and size for birllbrcara

window

Caliculates the pozition of 311
windows and cpens them

Fops a window int o full —riew
Ecsitions wind:wg undex 1nd o
manadger

Simulates 3 lzaser ranuyefinder and
calculates the range to nearest
rlatfzrm in weapr n si1zh* ~r - szsghalr:

reticle arrays

Rings the terminal bkell

Computes normals for tank rollers
Handles selection of an area —~n 35KEM
map

Handles selection of 1 X 1 KM grid
square

Displays viewing mode menu an-
handles selecticn

Sets viewing parameters for

Sets the cclor of the popup menus
3

upr dials and mouse

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

set_unqueue .C

setcolor.c

setcolor_initialize.c

setcontreols.c

setcontrcls fogm.c

setcurscrcolor.

setup_for driving.c

setur navwin.c

tanknormals. T

terrainncrmal

N

r
ys
~
1)
e
O
o
3
)
b
4]
)

tot num veh.cC

tracking check.

tracknormals.c
truckncrmals.c
turitnormals.c

update_lock_pcs

update lock pes fogm.c

C

.C

Ungqueues dials and mouse

Sets current RGB color based on
values in RGB color array
Initializes RGB color array

Sets up c<ontrols for driving

Sets contrels for flying the FOGM
missile

Sets the rurrent cclor ~f the <cursoe

w

moug

D

5

Sets up for driving u

2
1w

1oystick
DPraws small 2D 17KM map in

nawvigation window

as}

s fors dinto o a window
Saves world cocrdinates <f window
Fackage ~ontaining rcutines t:

manage simulaticn time

Tomputes normals for a tank

Computes normals for the terrain an

Feturns total nunber of platforms
Perfocrms check <f FOGM tracking
system

Computes normals for tank tracks
Computes normals for truck
Computes normals for tank turret
Calculates positicon that viewer 1is
loocking at for grcund platform
Calculates pesitizn that wiewer is

iooking at for FOSM missile

(D]

si

(s

icn

Mowes platform £2 new p

Computesg vector deot product

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

vecmag.c Computes magnitude of a wvectcor

vehmedel.c Package containing wvehicle moticn
modeling routines

viewbounds.c Computes viewing limits for

drawterrain

APPENDIX B PATH PLANNER CODE

o -*- Mode' LISP; Package. USER, Syntax: Common-lisp -*-

.Tide: clock functions

:Author: Shannon

;Date: 12 Apr 1989

:Discription: This program provides for the timming of clocks used in the Path Planner Control Program

(defflavor myclock ((start-ins-time 0)
(start-sym-time 0)
(last-ins-time 0)
(last-sym-time 0)
(delta-time 0)
)
0

initakbie-instance-variases;

(defmethod { set-start-tme rmyclock) (iris-tme)
{let” ()
setf astn=-tme iris-time)
sett start-ins-time 1ns-time)
setf stant-sym-tme (z! time))

{
(
(
(sett last-syr-tme start-sym-time)
(setf delta-time 0)

)

)

(detmethod { reset-last-time myclock) ris-time)
(let® ({deital 0 C) (oeita?))
(progn
(settiast-sym-time (zi bme))
{setf last-ins-ume rs-tme)
(setf deitat (- iris-tme start-nis-time))
(setf delta? (- last-sym-time stant-sym-time)}
)
)
)

(defmethod { get-tme mycloch) ()
(+ delta-tme (/ (+ 0.0 (nme-difference {z!. tme} last-sym-timej) F72, last-iris-ume)

)

(detmethod (.get-all-imes myclock) ()
(princ start-ins-time)

(pnnc start-sym-tme)

(pnnc lastins-ume)

(princ last-sym-time)
(pnnc delta-time)
)

124

. ~*- Mode. LIEP; Syntax: Common-isp, Package USER -*-

Title' chaosfiavor lisp

Author. Kwak

Modified by Shannon

Date: 19 Apr 1989

:Discnption. This code perfarms the communications between Symbohcs computers using a characier stream

(load “comm-tunctions®)

(detflavor mychaos ((host-name 'sym1)
(contact-name “user-chaos®)
(contact nil)
(userstream nil)
)

0
initable-instance-variabies)

(detmethod (set-host-name mychaos)
{name-of-host)

(setf host-name name-ot-hostj)

(detmethod i set-contact-nrame mychaos) (name}
(setf contact-name name))

(defmethod (set-contact mychaos) (con)

(setf contact con))

(defmethod (set-stream mychaos) (str)
(sett userstream str))

(defmethod | start-user mychaos) (hostname contactname)
(progn
(send selt set-host-name hostname)
{send seit set-contact-name contactname)
(send selt set-contact (chaos connect hostname contactrame 13 T2000))
(send self ‘set-stream (chaos make-stream contact directon bidirectional))
(terpr)
(pnnc "hostname *) (princ host-name)
(terpri)
(pnnc “contact name °) (pnnc contact-name)
(terpn)
"A conversation using chaos has been estabiished”))

(detmethod { stan server mychaos) (contactname)
(progn

(send selt ‘set-contact-name contactname)
(send self .setcontact (chaos listen contactname))
(chaos accep! contact)
(send self set-stream (chaos make-stream contact direction tidirectional;)
(terpn)
(pnnc “host name °) (pnnc host-name)
(terpn)
(pnnc “contact name ") (pnnc contact-name)
(terpn)
*A conversation using chaos has been established®))

(defmethod (:put mychacs)
(object)

(send userstream :line-out object)
(send userstream ‘force-output)

)

(defun read-string-sym {stream num-chars)
(let ((out-string *%))
(dotimes {1 num-chars)
(sett oul-stning (string-append out-string reac-char-nc-hanrg sveami;)
)
OU['SUlng
)
)

(defmethod (.check-sym mychaos) (size-10)
let* (\typetuter)
)
(progn
{setq typebufter
(reag-stnng-sym userstream size-10)|
)

(detmethod { put-ready mychaos)
(object)
[From path-ptanner to art
(let” ((bufter "1y
(sett bufter (sthng-append (stnng-append butfer object) *1""})
(progn
(send usersteam line-out buffer)
(send userstream force-output)
1
)

126

(defmethod (put-waypoint mychaos)
(object)
from path-planner to art
(st (‘bufter "@@@@"))
{sett bufter (string-append
(string-append bulter (convert-number-to-string object))
‘eee")
(pregn
(send userstream :line-out buffer)
(send userstream force-output)
t
1))

(detmethc 3 { load-map mychaos}
(utm-e utm-n veh-id)
From art to path pianner
(let” ({bufter "1™y,
(setf buter istring-append
(stnng-append butler

{convertnumber-to-str.ng (- uim-e 1008 3C0C0000C000)

)
(progn
{serd userstrea™ hre Cut buMen)
tsend userstream force ouinul
't
N

(detmethod (put-path mychaos’
(org-utm-e org-utm-n stant-utri-e siat-utm-n gea.-Lim-e goal-utm-n veh-
from ari to path-pianner
(let® ((buiter "@@@®@")
(string-or4-e (convert-number-10-stnng org-utm-e))
(string-org-n (convert-number-to - stnng org-uim-n))
(string start-« (convert-number-to-stnng stant-utm-e))
(string-start-n (convert-number-to-stnng start-utm-n))
(string -goal-e (convert-number-to-string goal-utm-e))

fstning-goal-and-d (convert number-to-string

(+ (" goal-utm-n 100000C0000)
veh-id
)

)

(sett bufter (stnng-append
(stnng-append
{stnng-append

{stnng-append
(string-appenc
(stnng-append
(stnng-append bufter
sthng-org-e
)
string-org-n
)
string-start-e
)
sting-swart-n
)
sinng-goal-e
)
string-gcal-and-id
)
)

(progn
(send userstream line-ou! buffer)
(send userstream farce-outpul)
1
)

(cetmethod { stop mychaos)

0
(send userstream close abort)

128

. -*- Mode: LISP, Syntax: Common-lisp, Package. USER -*-
‘Tide insflavor3 lisp
:Author: Kwak
;Modification Author: Shannon
;Modification Date' 20 May 1989
. :Discription” This code provides communications functions to the symbolics workstation, whereby 1t can
communicate to the Ins

. (defmacro loopfor (var init test exp1 &optional exp2 exp3 expd exp5)
‘(prog ()

(setq var ,init)

tag
expl
axp2
exp3
expd
exps
(setq .var (1~ .var))
(if (= var test) (return t) (go tag);))

{lcad “comm-functions”)

(defvar “ins-port1® 1061) . this 1s the send pont

(detvar "iris-port2® 1061) . this is the receive port

(detvar “local-talk-port® 1500) (this is the loca! send
. pon

{detvar “iocal-listen-port” 1501) this 1s the (ocal

receive port

(defflavor conversaton-with-iris ((talking-port number *iris-port1*)
(hstening-port-number “iris-pcn2*)
(local-talk-port-number “locai-ta'k-port”)
(locai-listen-port-number

focal-listen-port)

(talkhing-stream)
(istening-stream)
(destination-host-object)
)

0

‘intable-instance-vanables)

- (defmethod (init-destination-host conversation-with-iris)
(name-ot-host)
(setf destinaton-host-object (net parse-host name-of-host)))

129

’f

(defmethod (start-iris conversation-with-irs) ()
(sett talking-stream
(tcp.open-tcp-stream destination-host-object
talking-port-number
local-talk-port-number))
(setf listening-stream
(tcp open-tcp-stream destination-host-object
listening-port-number
10Cai-HStenN-puli- wnivel))
*A conversation with the ins machine has been established")

(defun read-stnng (stream num-chars)
(let ((out-stning "))
(doumes {i num-chars)
(sett out-string (string-append out-string (read-char-no-hang stream?)))
out-string))

{detmethod (.check-ins conversation-with-iris) (size-10)
(let” ((typebuffer)
)
(progn
(setf typebutter

(read-string listening-stream size-io)

{detvar "step-var® 0)

(defun my-wnte-stning(stnng stream)
(let” {{(num-chars (length stnng)))
(dotimes (1 num-chars)
{wnte-char (aref string i) stream)
)
)
)

(detmethod (put-waypoint conversason with-ins)
(veh-id utm-e utm-n)

(let” ((buffer (stnng-appenc

S

{string-append
(convernt-number-to-string veh-id)
(string-append

(stnng-append
(convert-number-to-stnng utm-e)
(string-append

(string-append
(convert-number-to-string utm-n)
it
)
)
)

)
)

)
(buffer-length (iength butfer))

(lengthbutfer (conven-number-to-string tuffer-iengi~y)

(progn
{my-wnte-stnng buffer :=liung-stream)
(send talking-stream force-outpit)
)
)
)

(defmethod { stop-iris conversation-with-iris)
0
(progn (send talking stream cicse)

(send listening-stream ciose)jj

5 -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

title comm functions

.author Kwak

.discription This program provides functions to the communications progarams that conver! to and from strings
and numbers.

(defun convert-number-to-string (n)
(pnnc-to-string n))

(defun convert-string-to-integer (str &optional (radix 10))
(o (GO(+j1)
{n O (+ (" n radix) (digit-char-p (char str j) radix))))
((= j (length str)) n)))

(detun find-period-index (str)
(catch ‘exit
(dotimes (x (length str} nil)
(it (equal (char str x) (char =" C))
(throw ‘exit x)))))

(defun get-leftside-of-real (str &optional {radix 10))
(do (O (1 +]))
(n O (+ (" nradix) (digit-char-p (char str {) radix))))
((or (null (digit-char-p (char str j) radix)) (= j (length str))) nj)))

(detun get-nghtside-of-real (str &optional (radix 10))
(do ((index (1+ (find-period-index str)) (1+ index))
(factor 0.10 (" factor 0 10))
(n 0.0 (+ n (" factor (digit-char-p (char str index) radix)))})
{{= index (length str)) n }))

(detun convert-string-to-real (str &optional {radix 10))
(+ (flcat (get-leftside Gi-real strradix)) (get-nghtside-of-real str radix)))

-

o -*- Mode: LISP; Package USER; Syntax- Common-lisp -*-
;Tide define-packege-interface
;Author Shannon
;Date 24 May 1989
. ;Discniption Defines the interface between programs running in different Symbolics packages

(defpackage d-user
(.export
conversation-with-iris
mychaos
myclock

convert-number-to-string
convert-string-to-real
convert-string-to-integer
stnng-append
princ-to-stnng))

i %%% -*- Mode® ART. Syntax: Common-lisp; Base: 10.: Package: ART-USER -*-

.Title: Path Planner Control Program

;author: Shannon

:Date: 11 June 1989

:Discription: This program pravides the over all control logic for finding a path and the sending that path to
the vehicle simulation.

#L(load "irisflavor3-)

#L(load "chaosflavor”)

#L (load “det-intertace”)

#L(load “dockflavor”)

#L(defvar talk-s)

#L (detvar talk-i)

#L(sett talk-i (scl.make-instance 'user:conversation-with-iris))
#L(setf talk-s (scl make-instance ‘user mychaos))

(defschema counter
(seq 0)
)

(defschema obstcle
(instance-cf counter)
(nw-utm-e 000)
{nw-utm-n 0OCC})
(sw-utm-e 000)
(sw-utm-n 000)
(se-utm-e 000)
(se-utm-n 000)
(ne-utm-e 000)
(ne-utm-n 000)
(seq 000}
(seq-ord last)
)

(defschema obj-type
(type unk)
)

(detschema location
{utm-e 000}
(utm-n 000)

)

(defschema id
(veh-id 000)

)

(defschema map-state
(ready not-yet)
)

(defschema clock
* (clock-id new)
(time 000)
)

(defschema control-conditions
(new-goal no)
(quit-all no)
(broke-down no)
{pause
(whole-path no)

noj
(new-time no)
{new-waypoint no)
(old-time 0)

)

(defschema initial-map-points
(org-utm-e 000

{start-utm-e 000
(start-utm-n 000

- (goal-utm-e 000)
(goal-utm-n 000)
)

)
(org-utm-n 000)
)
)

(defschema control

(instance-of
(instance-of
(instance-of

clock)

ob)-type)
id)

(instance-of counter)

(instance-of control-conditions®

)

(defschema map
(instance-of obj-type)
(instance-of location)
(instance-of id)
(instance-of map-state)
)

(defschema init
(instance-of oby-type)
(instance-of 1d)

{instance-of initial-map-points)

)

(defschema veh
(cse 0)
(vel 0)
(guide 0)

)

(defschema veh-change
(delta-tme 0)
(new-position no)

)

(defschema msg-state
(current no)

)

(detschema veh-state
(instance-of obj-type)
{(instance-of veh)
(instance-of id)
(instance-of location)
{instance-of ven-change)

)

(defschema veh-msg
(instance-of clock)
{instance-of obj-type)
(instance-of veh)
(instance-of id)
(instance-of location)
(instance-of msg-state)
)

(detschema machine-type
(one one)
(two two)
(three three)
(four four)
(five five)

)

(defschema sym
{instance-of machine-type)
{one sym1)
(two sym2)

tss

(three sym3)
)

(defschema ins
(instance-of machine-type)
(one gravyt)
(two gravy?2)
(three gravy3)
(four gravyd)
(five gravys)
)

(defrelation msg-sym (?type))

(defrelation msg-ins (?type))

(defrelat:on start-ins-comm (?t-or-1))

(defrelation start-sym-comm (?t-or-f))

(defrelation menu {?one-or-two)}

(defrelation sym-on ?yes))

(defrelation check-comm (?ins-and-sym))

(defrefation cloch-update (%yes))

(defrelation sym-iink (?code))

(defrelation ins-link { ?code))

(deffacts intalization
(menu one)

)

(detrule menut
(declare (salience -1000))
(schema sym
(one 7s1)
(two ?s2)
(three 7s3)
)
?a <- (menu one)
=2>
(pnntout t t "Where 1s the path planner located?”)
(prntout 1t "Your choices are the following, chose one by 1it's letter ~

f

t"a” ?s1
t°b* 752
t°c " 73
t “NOTE-—Please ensure that the path planning software i1s runming”
1)
(bind ?b (read))
(if (or (eq 7b ‘a)
{eq 7B 'A))
then
(assert (sym-link ?s1)
(menu two)
(start-sym-comm yes)

)

else
(if (or (eq ?b 'b)
(eq ?b 'B))
then
(assert (sym-link ?s2)
(menu two)
(start-sym-comm yes)
)
else
(if (or {eq 7b ¢)
(eq ?b C))
then
(assart (sym-link ?s3)
(menu two)
(stan-sym-comm yes)
)
eise
(retract ?a)
(assarn (menu one)j)

)

)
(retract ?a)

)

(defrule menu2
(declare (salience -1000))
(schema inis

(one 1)

(two 212)

(three ?i3)

(four ?7id)

(five 215

)

7a <- (menu two)
=2
(printout t t "Where 1s the vehicle simulator located?”)
(pnntout t t “Your choices are the foliowing. chose one by 1it's letter *
ta " %
t°h° %2
t ot 23
t°d " 74
t'e” 75
t "NOTE —Please ensure that the simulator is runming”
t)
(bind ?b (read))
(if (or {eq ?b 'a)
(eq ?b"A))
then
(assert (ins-link 711))
(assert (start-ins-comm yes})
else
(if (or (eq ?b b)
{eq 70 B))
then
(assert (iris-hink 712))
(assert (start-ins-comm yes))
else
(it (or {eq ?b ¢)
(eq?b 'C))
then
(assert (ins-link 7:3))
(assert (start-ins-comm yes))
else
(it (or {eq b d)
(eq % D))
then
fassert rs-ink 2.4,
(assert {start-ins-comm yes;)
elise
(if (or (eq ?b ‘e)
(eq 7b 'E))
then
(assert (ins-link 715))
(assert (start-ins-comm yes))
else
(retract ?a)
(assert {menu two))

)

)
(retract ?a)

)

(detfrule start-ins-comm-links
(declare (salience -1000))
(ins-link ?ifs-machine)
7a <- (start-ins-comm yes)
=>
#L(scl send talk-t init-destination-host ?ins-machine)
#l(scl:send talk-1 start-ins)
(retract ?a)
(assert (check-comm ins)

)

(defrule start-sym-comm-links
(declare (salience -10GC))
(sym-hnk ?sym-machine)
7a <- (start-sym-comm yes)
=>
#l(scl send talk-s ‘starti-user ?sym-machine “path”)
(retract ?a)
(assert (sym-on yes)

)

(defrule check-comm-iinks-.ris
(declare (sahence 500j)
7a <- (check-comm ins)
=>
(bind ?b #l{scl intern (sc! send tatk-1 check-iris 1))
(if {eq 75 NiIL) then
(retract "a)
(assert
(check-comm ins)
(check-comm sym)
{clock-update yes)
)
eise
(retract ?a)
(assert (msg-ins ?b))
)

140

(defrule check-comm-links-sym
(declare (salence 500))
(schema ?any
(or (ready sent)
(ready ready)
)
)
7a <- (check-comm sym)
=>
(bind ?b #L{sc intern (scl send talk-s check-sym 1))}
vf (eq ?b NIL) then
(reract ?a)
(assert (check-comm ins))
else
(retract 7a)
{assert (msg-sym ?b))
)

(defrule read-update-in
(declare (salience 1000))
7msg <- imsg-ins 7a)
(testeq ?a ‘>
=>
(bind ?b #L(scl intern (sci send talk-1 ‘check-iris 3,4)
(it (eq ?b '>>>) then
{t.nd ?veh-id #L{scl send talk-1 check-ins 10;)
(bind ?utm-e #L(sci send talk-i check-ins 10))
(tind ?utm-n #L{sd send talk-i check-ins 1C})
(bind ?cse #L.sd send talk-i check-ins 10})
(bind ?vel #L{sci send talk-1 check-iris 10))
(bind ?ume #Liscl send talk-1 ‘check-ins 10;)
(bind ?guide #Liscl send talk-1 check-ins 1))
{bing ?b #Liscl intern (scl send talk-1 .check-irs 3j
(tieg ?b >>>) then
(bind ?msg-id "MSG")
(bind ?msg-id #L(sclintern (user string-append ?msg-id ?veh-idi))
(bind ?veh-id #L(user convert-stnng-to-integer *veh-id})
(bind ?utm-e #L{floor {user convert-stnng-to-real 7utm-e)))
(bind ?utm-n #L{floor (user convert-stnng-to-real 2utm-n;})
(bind ?cse #L(user convert-stnng-to-real ?cse))
(bind ?vel #L(user conven-stnng-to-real ?vel),
(bind ?ume #L user convert-siring-to-real time))
(bind ?guide #L{user conven-stnng-to-integer ?guide))
(modity tschema ?msg-id
{veh-id ?veh.d)
(utm-e ?utm-e}

141

(utm-n ?utm-n)
(cse 7cse)
(vel ?vel)
(bme ?tme)
(guide “?guide)
(current yes)

)

)

(retract ?msg)

(assert (check-comm ins)
(check-comm sym)
(clock-update yes)

)

(defrule read-init-in
(declare (salience 10C02))
?msg <- (Msg-iris 7a)
(test eq ?a ‘<)
=>
(bind ?b #L(scl.intern {scl send talk-1 check-ins 3)j)
(if ieq 7b '<<<) then
(bind ?org-utm-e #L(scl:send talk-1 .check-ins 1C))
(bind ?org-utm-n #L(scl.send talk-i .check-iris 10))
(bind ?veh-id #L(sci send tatk-1 check-iris 10j)
(bind ?start-utm-e #L(sci send talk-i ‘chech-ins 10j)
(bind ?start-utm-n #L(scl send talk-i check-ins 1))
(bind ?goai-utm-e #L(sci send talk-i check-ins 10))
(bind ?goal-utm-n #L(scl:sena talk-1 check-ins 10})
(bind ?time #L(scl send talk-i check-ins 10))
(bind ?b #L(scl intern (scl send talk-i chech-ins 3:;)
(if eq ?b ‘<<<) then
(bind ?init “INIT®)
(bind 2init #L(scintern (user stnng-append Zinit 7venh-id)))
(bind ?map "MAP")
(bind ?map #L(scl.intern (user:string-append ?map ?veh-id}))
(bind ?cont "CONTROL")
(bind ?cont #L(scl.intem (user:stnng-append 7cont ?veh-id}))
(bind ?veh "VEH")
(bind ?veh #L(sclintern (user stnng-append ?veh ?veh-id)))
(bind ?msg-id "MSG")
(bind ’msg-id #L(scl.intem (user string-append ?msg-id ?veh-id)))
{bind ?org-utm-e #L(floor (user convert-string-to-real ?org-utm-e}})
(printout tt Porg-utm-e)
(bind ?org-utm-n #L(tloor (user.convert-stnng-to-reai 2org-utm-nj))

142

{printout tt ?org-utm-n)

(bind ?veh-id #l(user.convert-string-to-integer ?veh-id))

(bind ?start-utm-e #L(floor (user.convert-string-to-real
7start-utm-e}})
(bind ?start-utm-n #L(floor (user.convent-string-to-real
?start-utm-n)))
(bind ?goal-utm-e #L(floor (user.convert-string-to-real
?goal-utm-e)))
{bind 2goal-utm-n #l (floor (user.conven-string-to-real
?goal-utm-n)))
(bind 2Zume #{ (userconvert-string-to-real ?time}))
(bind ?clock-id #L(scl'make-instance 'user myclock))
#L{scl:send ?clock-id set-start-ime ?time)
(assert (schema ?init
{instance-of imit)
)
(schema ?map
(instance-of map)
)
(schema ?cont
{iInstance-ot control)
)
(schema ?veh
(instance-of veh-state)
)
(schema ?msg-id
(instance-of veh-ms3)
)
)
(modity {schema ?init
(org-utm-e ?org-utm-e)
(org-utm-n ?org-utm-nj
(veh-d ?veh-id)
(start-utm-e ?start-utm-e)
(start-utm-n ?start-utm-n)
(goal-utm-e ?goal-utm-e)
(goal-utm-n ?goal-utm-n)
(type nit)
)
(schema ?map
(veh-id ?veh-id)
(utm-e %0rg-utm-e)
(utm-n 70rg-utm-n)
(ready send)
(type map)
)
{schema ?cont

(new-goal yes)
(time ?time)
{old-time ?tme)
(veh-id ?veh-id)
(clock-id ?clock-id)
(type cont)
(seq)
)

(schema ?veh
(veh-id ?veh-id)
(utm-e ?start-utm-e)
(utm-n ?start-utm-n)
(type veh)
)

(schema ?msgq-id
(type msg)
{current noj

]

)
(retract >msg)
(assert
(check-comm sym)
(clock-update yes)
}

(defrule process-map-loaded-msg
(declare (saiience 1000))
7msg <- (Msg-sym ?a)
(test (eq ?a 'l))
=>
(bind 7b #L{scl intern (scl send talk-s check-sym 3)))
(if (eq ?b ') then
(bind 7cond #L(scl.intern (sci:send talk-s check-sym 5)))
(bind ?veh-id #L(scl send taik-s check-sym 10j)
(bind ?b #L(sclintern (scl.send talk-s check-sym 3))}
(it (and (eq ?b 1Y)
(eq ?cond 'READY)) then
(bind ?map "MAP")
{bind ?map #L(scl intern (user stnng-append ?map ?veh-id}))
(modify (schema ?map
(ready ready)

!

144

)
(retract ?msg)
(assert (check-comm inis))

)

(defrule process-waypoint-in-msg
(declare (salience 1000}))
?msg <- (msg-sym ?a)
(test (eq ?a '@))
=
(bind ?b #L(scl:intern (scl:send talk-s .check-sym 3)))
(if (eq 7b ' @@@) then
(bind 2utm-e #L(scl:send talk-s :check-sym 5))
(bind 2utm-n #L(sd:send talk-s .check-sym 5}))
(bind ?veh-id #L(scl.send talk-s :check-sym 10))
(bind 7seq #L{sclsend talk-s ‘check-sym 5))
(bind ?b #L{sci.intern (scl send talk-s check-sym 3;))
uf (eq ?b @@@) then
(bind 2way "WAYPOINT")
(bind ?way #L(scl intern (user:string-append
(user string-append ?way
?veh-d
)
75eq
)
)
)
{bind 2utm-e #L(floor (user:convert-string-to-integer ?utm-e}))
(bind 2utm-n #L(floor (user convert-string-to-integer 7utm-n)))
(bind ?veh-id #L(floor (user convert-string-to-integer ~veh-id}})
(bind 7seq #L(floor (user'convert-string-to-integer ?seq;))
(assen (schema ?way
(instance-of id}
(instance-of counter)
(instance-of cbj-type)
(instance-of location)
(type w-point)
(utm-e ?utm-e)
(utm-n 2utm-n)
(veh-id ?veh-id)
(seq 7seq)
)

)
(f (0 = ?seq) then
#L(scl send talk-1 put-waypoint ?veh.d ?utm-e 2utm-n)

)
(retract ?msg)
(assert {check-comm ins))

)

(defrule clean-up-waypoints
(declare (salience 8000))
(schema ?way
(type w-point)
(veh-ild ?veh-id)
)
(schema ?msg
(type msg)
(veh-id ?veh-id)
(guide 0)
(current yes)
)
{schema ?veh
(veh-id ?veh-id)
(type veh)
(guide 1)
)
(retract
(schema ?way
(instance-of id)
(instance-of counter)
linstance-ct obj-ty pe)
(instance-of location)

)

(detrule clean-up-vehicle

{declare (saiilence 50CC ;

(schema ?msg
(type msg)
(veh-id ?veh-id)
(guide 0)
{current yes)
)

{schema ?init
(veh-id ?veh-id)
(type init)
)

(schema ?map
(veh-d ?veh-id)

146

(type map)
)

(schema ?cont
(veh-id ?veh-id)
(type cont)

)
(schema ?veh
(veh-id ?veh-id)

(type veh)
(guide 1)
)
=>
(retract
(schema ?2init

(instance-of init)
)

{schema ?map
(instance -of map)
)

{schema ?cont
(instance-of controt)

\

)
(schema ?veh
(instance-of veh-state)

)

(defrule clean-up-sym-msg
(declare (salience 500))
7msg <- (Mmsg-sym ?code)
=>
(retract ?msg)
(assert
(check-comm sym)
(check-comm ins)
(clock-update yes)
)
)

(defrule clean-up-ins-msg
(declare (salience 500))
7msg <- (Msg-ins ?code)
=>
{retract ?msg)
(assert

147

(check-comm irs)
(check-comm sym)
(clock-update yes)
)

)

(defrule load-map
(declare (salience 1000))
(sym-on yes)
(schema ?map
(utm-e ?org-e)
(utm-n ?org-n)
(veh-id ?veh-id)
(ready send)
(type map)
)
=>
#L(scl:isend talk-s :load-map ?org-e ?org-n ?veh-id)
(modify
(schema ?map
(ready sent)
)
)
(assert (check-comm sym))

)

(detrule start-path
(declare (salience 5000))
(schema %veh
(type veh)
(guide 1)
(veh-id ?veh-id)
)
(schema ?init
(org-utm-e %org-e)
{org-utm-n ?org-n)
(start-utm-e ?start-e)
(start-utm-n ?start-n)
(goal-utm-e ?goal-e)

(goal-utm-n ?goal-n)

(type init)
(veh-id ?veh-id)
)

(schema ?map
(veh-id ?veh-id)

(type map)
(ready ready)

148

)

(schema ?control
{new-goal yes)
(veh-id “?veh-id)
(type cont)

)
=>
#L(scl:send talk-s :put-path ?org-e ?org-n ?start-e ?start-n ?goal-e ?goal-n
?veh-id)
(modity
(schema ?control
(new-goal no)

)

(defrule send-new-waypoint

{declare (salience 5000))
{schema ?any

(type w-point)

(veh-id ?veh-id)

(seq 7?seq)

{utm-e ?east)

(utm-n ?north)

)
(schema ?control
(seq ?seq-num)
(veh-id ?veh-id)
{tlype cont)
{new-waypaint yesj
)
(

(test (and (?seq-num < ?seq)
(7seqg-num + 3 > ?seq)

)

=>
#L(scl:send talk-i put-waypoint ?veh-id ?east ?north)
(modity (schema ?controf
(seq ?seq)
(new-waypoint no)
)
)
(it (?seq-num = 1) then
(assert (clock-update yes))
)

149

(defrule update-vehicle
(declare (salience 1000))
{schema ?veh-msg
(type msg)
(veh-id ?veh-id)
(utm-e ?utm-e)
(utm-n 7utm-n)

(cse ?cse)
(vel ?vel)
(time ?time)
{(guide “?guide)

(current yes)
)
(schema ?control
(type cont)
{veh-id ?veh-id)
)
(schema ?veh-current
{veh-id ?veh-id)
(type veh)
)
=
{modify (schema ?conuol
(time 2tme)
(new-time yes)
)

(schema ?veh-current

(utm-e ?utm-e)
(utm-n 2utm-n)
(cse 7cse)
(vel vel)
(guide ?guide)
(new-pasition yes)

)
(schema ?veh-msg
(current no)

)

(defrule update-clock
(declare (salience 500))
?test <- (clock-update yes)
(schema ?control
(veh-id ?veh-id)
(tme 7tme)
(clock-d ?clock-id)

(type cont)
)
(schema ?veh
(veh-id ?veh-id)
(type veh)
(delta-ime ?delta-time)
(new-position no)
)
(test (?delta-time = 0))
=>
(bind ?current-time #L(scl:send ?clock-id :get-time))
{bind ?delta-time (?current-ime - ?ame))
(modify (schema ?control
(time ?current-time)
)
(schema ?veh
(delta-tme 7geita-tme)
)
)
(retract 7test)

)

(defrule reset-clock

(declare (salience 5000))
(schema ?control

{time ?time)
(old-time ?0ld-tme)
(clock-id ?clock-id)
(new-time vyes)
(type cont)
)

(schema ?veh
(veh-d ?ven-id)
(type veh)
(delta-ime ?delta-time)
(new-pasition 7no)
)
=>
(if (eq ?no 'NO) then
(bind ?delta-time (?time - ?old-ime))
)
#L(scl:send ?ciock-id reset-last-ime ?time)
(modity (schema ?control
(old-ime ?time)
(new-tme no)
)

{schema ?veh

(delta-tme ?delta-time)
(new-position no)

)

(defrule change-position
(declare (salience 5000))
(schema ?veh
(type veh)
(utm-e utm-e)
(utm-n 2utm-n)
(cse ?cse)
(vel ?vel)
(delta-time ?delta-time)
(new-position no)
)
(test (?delta-time > 0))
=>
(bind ?delta-dist (?vel * ?delta-time}))
(bind ?utm-e #L(floor (+ ?utm-e (* ?delta-dist (cos ?csel))))
{bind 2utm-n #L(floor (+ ?utm-n (* 7deita-dist (sin 7csej;}))
(modify (schema ?veh
(utm-e ?utm-e)
(utm-n ?utm-n;
(delta-time Q)
(new-position yes)

)

(defrule new-waypoint

(declare (salience 1000;)

(schema ?vgh
(type veh)
(veh-id 7veh-id)
(new-position yes)
(utm-e ?utm-e)
(utm-n 2utm-n)
(guide 1)
)

(schema ?control
(type cony)
(seq ?seq)
(veh-id ?veh-id)
)

(schema any

152

)
(* (car (cdr (cdr (cdr (car (car wave-paths))))))
1000000000000000
)
(* (car {cdr (car (car wave-paths)}))) 100000)
(car (car (car wave-paths))}
)
)
(setf wave-paths (append (cdr wave-paths)
(list (cdr (car wave-paths)))
)

)
(t
(send talk-s put-waypoint
(+ (" (car (cdr (cdr (car (cdr (car wave-paths))))))
10C0CI200000CC00000C0
)
(* (car (cdr (cdr {cdr (car (cdr (car wave-paths;;);i))
1000000000000000
)
(* (car {cdr (car (cdr {car wave-paths;ij}) 10C000)
(car (car (cdr (car wave-paths))))
)
)
(setf wave-paths (cdr wave-paths))
)
)
)
wave-paths
)
)

(defun add-id (node-tist veh-id)
(let ((num-nodes (iengtn node-hst)))
(dotimes (x num-nodes)
(setf node-list (append '~dr node-list)
(hst (cons veh-id (car node-list)))
)

)
node-list
)
)

(detun add-s>g-num (node-list)
(let ((num-nodes (length node-list}) (seq 0))

(dotimes (x num-nodes)
(sett node-list (append (cdr node-list)
(list (cons seq (car node-list)))
)

)
(setf seq (+ seq 1))
)
node-list
)

)

(detun start-search-control
O
(search-control)

)

(detun search-control
0
(foad "Ir-wave®)
(load “chaosflavor®)
(setf talk-s (make-instance ‘mychaos))
(send talk-s start-server "path®)
(do” ({control-s (send talk-s check-sym 1)
(send talk-s check-sym 1)
)
)
((setf tme-to-quit *done”)
(send talk-s stop)
)
(cond
((equal control-s *1*)
(setf next-3 {send talk-s check-sym 3))
(cond
({(equal next-3 "1y
(setf map-str-utm-e (send talk-s check-sym 5))
(sett map-str-utm-n (send talk-s :check-sym 5))
(sett veh-id (send talk-s ‘check-sym 10))
{setf next-3 (send tzlk-s check-sym 3))
(cond
({(equal next-3 "I!")
(terpri)
(pnnc “loading map”)
(sett map-utm-8 (convert-stnng-to-integer map-str-utm-e))
(setf map-utm-n (convert-stnng-to-integer map-str-utm-n))
(setf veh-map (intern (stnng-append
(string-append "MAP*

map-str-utm-e

(type w-point)
{veh-1d ?veh-id)
(seq 7seq)
{utm-e ?east)
(utm-n ?north)
)
=>
(it (200 > #L{let {{dx (- 7east ?utm-e))
(dy (- ?north ?utm-n))
)
(sqrt (+ (* dx dx) {* dy dy)))
)
)
then
{modify
{schema ?contro!
(new-waypoint yes)
)
)
)
(modify (schema ?veh
(rew-pcs.uen No;

)

153

5 -"- Mode: LISP; Package USER; Syntax: Common-lisp -*-
;Tile' Search Ccntrol Program

;Author' Shannon

.Date 5 Jun 1989

;Discnption: This program controls the flow of the search algonthm

{detvar ‘done”)

(sett *done’ nil)
(defvar *maps”)

{setf *maps® nil)
(defvar *vehs*)

(sett *vehs® nil)
(defvar *wave-paths®)
(setf *wave-paths® nil)

(defun convert-to-utm (node-list map-utm-e map-utm-n)
(let ((num-nodes (length noce-list)))
(dotimes {x num-nodes)
‘cond
({eq x {- num-nodes 1))
{setf node-list \cdr noae-listy)
)

(t
(setf (car (car node-ust); (new-utm {car (car noce-iss,, Map-.im-e;;
(setf (car (cdr (car node-hist))) (new-utm (car (cdr (car node-list;))

map-utm-rjj
(sett node-list (append (cdr node-iist; list (car node-iist))))
)
)
)
node-list
)

{defun send-waypoints (wave-paths)
(tet ((num-waves (length wave-paths)))
(dotimes (x num-waves)
(terpn)
{cond
{{(null (car wave-paths)®
{setf wave-paths (cdr wave-paths))
)
(yodr (cdr (car wave-paths)j)
(send talk-s put-waypount
(« (" (car (cdr cdr fcar fcar wave-paths;)i;)
100000000200020000000

)
map-str-utm-n
)
)
)
(setf current-veh (intemn (string-append *VEH" veh-id)))
(do ({(maps *maps* (cdr maps)}}
((or (equal veh-map (car maps))
{null (cdr maps))
)
(cond
\(equal ven-map (car maps}))
(send talk-s put-ready
(string-append “FEADY"
veh-id
)

)
("null {edr mags))
(setf (symbol-vaive veh-map; make-array (102 1C2;))
(setf *maps”® (cons veh-map "maps”)j
{sendtalk-s p_t-ready
(string-append {load-map 100
map-utm-e
map-utm-n
*bin-siope dat”
(symbol-value veh-map)
)
veh-ic

\

(setf (symbol-value current-veh) veh-map)
(do ((vehs *vehs® (cdr vehs)))
((or
(eq current-veh (car vehs})
{null {cdr vehs))
)
(cond
((null (cor vehs)))
{setf *vehs® (cons current-veh *vehs"))
)
)

(terpn)
(pnnc *map loaded”)
)
)
)
)
)
((equal control-s "@")
{setf next-3 (send talk-s .check-sym 3))
(cond
((equal next-3 "@@@")
(setf map-utm-e (send talk-s :check-sym 5))
(setf map-utm-n (send talk-s .check-sym 5))
(setf start-utm-e (send talk-s :check-sym 5})
(setf start-utm-n (send talk-s :check-sym 5})
(setf goal-utm-m-e (send talk-s check-sym 5))
(setf goal-utm-m-n (send talk-s .check-sym 5))
(setf veh-id-str (send talk-s :check-sym 10j)
(setf next-3 (send talk-s .check-sym 3))

(cond
((equal next-3 "@@@")
(setf map-utm-e (convert-string-to-integer map-utm-e;
(setf map-utm-n (convert-string-to-integer map-utm-n))
(setf start-utm-e (convert-string-to-integer start-utm-e))
(setf start-utm-n (convern-stnng-to-integer start-utm-n))
(setf goal-utm-m-e (convert-stnng-to-integer goal-utm-m-e))
(setf goal-utm-m-n (convert-string-to-integer goai-utm-m-n;)
(setf veh-id (conven-string-to-integer veh-id-str))
(setf start-utm-e {floor (/ (- start-utm-e map-utm-e) 10C)})
(setf start-utm-n (Hoor (/ (- start-utm-n map-utm-nj} 100)})
(setf goal-utm-e (floor {/ (- goal-utm-m-e map-utm-e) 100)))
(setf goal-utm-n (floor (/ (- goal-utm-m-n map-utm-n} 10C;})
(setf current-veh (intern (stnng-append “VEH" veh-id-str)))
(terpn)

{pnnc “plannin;, path”)

(terpri}

(pnnc start-utm-e)

(terpri)

{pnnc start-utm-n)

(terpri)

{pnnc goal-utm-e)

(terpri)

(pnnc goal-utm-n)

(setf ‘wave-paths® (cons

(add-segq-num
{aod-id
(convert-to-utm

(append
(wave start-utm-e
stan-utm-n
goal-utm-e
goal-utm-n
(symbol-value
(symbol-vale current-veh)
)
)
(list (list goal-utm-e goal-utm-n))
)
map-utm-e
map-utm-n
)
veh-id
)
)
‘wave-paths”®

}

)

)
)

(cond
((not (atom *wave-caths'))
{(setf “wave-paths” {send-waypaomn!s "wave-pahs®))
)
)

)

)

(detun new-utm (num map-org)
(+ map-org (* num 100) (random 100))
)

159

.. ="~ Package: USER; Mode: LISP, Syntax: Common-lisp -*-
;Title: Ir-wave lisp

;Author: Shannon

;Date: 20 May 1989

:Discription: This program is the implimentation of a wavefront search aigorithm
: (wave number-of-explored-cells touched-flag)

(defvar *cost-array®)

(defvar *center-cell®)

(defvar *s-wave®)

(defvar *g-wave*)

(defvar ‘array-size*)

(defvar *‘map-loaded")

(defvar *map-array®)

(detvar *start-loc*)

(defvar *goal-ioc*)

(detvar *parent-array*)

(setf *map-size®)
(sett *start-loc* (2 2))
(setf *goal-loc* (10 10))

(defun parent-p(x y)
(aref *parent-array® x y))

I d

(defun set-new-cost(x y cost)
(setf {(aref *cost-array® x y) cost))

(defun set-new-parent(x y parent-x parent-y)
(sett (aref *parent-array” x y) (list parent-x parent-y)))

(defun retrieve-cost(x y)
(aref "cost-array” x y))

(defun retrieve-parent(x y)
(arel “parent-array* x y))

{detun get-cost-from-map(x y)
(aref *map-array® x y))

(defun load-map (mapsize map-e map-n mapfile veh-map)
(setq input-stream (cpen mapfile ‘direction Input ‘byte-size 8 ‘characters nil))
(sett map-loc (+ {* (floor (/ (- map-e 41000) 1000)) 10)
(" (fioor (/ (- map-n 60000) 1000)) 3500)))
(setf *array-size® (+ mapsize 2))
(sett *‘map-array*® veh-map)
(do ((ycoord O (+ ycoord 1)))

160

((= ycoord *array-size’))
(sett (aref *‘map-array® 0 ycoord) -2)
(setf (aref *map-array” (- *array-size* 1) ycoord) -2))
(do ((xcoord O (+ xcoord 1))}
((= xcoord *array-size’))
(setf (aref *map-array® xcoord 0) -2)
(setf (aref *map-array® xcoord (- "array-size* 1)) -2)
)
(do ((ycoord 1 (+ ycoord 1)))
{(= ycoord (- "array-size® 1)))
(file-position input-stream map-loc)
(do {{xcoord 1 (+ xcoord 1)))
({(= xcoord (- *array-size® 1)))
(setf slope (read-byte input-stream))
(setf slope (+ (/ (+ 0.0 slope) 2) 1))
{cond
({> slope 15) (sett slope -2)))
(setf (aret *map-array® xcoord ycoord) slope)
)
(setf map-loc (+ map-loc 350))
)
(close input-stream)
(setf *map-icaded” 'yes)
"READY*
)

(oefun wave(swri-e stan-n goal-e goal-n veh-map)
(cond {(equal "map-loaded” ‘yes)
(set “start-loc® {list start-e start-n))
(sett "goal-loc* {list goal-e goal-nj)
(sett “map-array* veh-map)
(read-terrain-data)

(inival-expand)

(normal-expand)

(repon-sclution)

)

(t

‘no-map-availabie)))

(defun report-solution{)
(~end {reverse (follow-link (first ‘center-celi*) (second *center-cell”)))

cdr (follow-link (first “center-cell®) (third *center-cell*)})

(
)
)

(defun toliow-link (pos’ pos2)
(cond ({equal pcs* pos2)

161

(list pos2))
(t
(cons post
(follow-link
pos2
(retneve-parent (first pos2)
{second pos2))))))

(detun read-terrain-data()
(let ((cost) (start-x) (start-y)

(goal-x) (goal-y))
(setf *parent-array® (make-array {list *array-size® *array-size*});
(setf *cost-array® (make-array (list "array-size" *array-size*}))
(copy-array-contents “map-array® “cost-array”)
(setf start-x (first *start-loc*))
(seff start-y (second *start-loc®))
(setf goal-x (first *goal-loc*))
(setf goal-y (second *goal-loc’))
(set-new-parent start-x start-y start-x start-y)
(set-new-parent goal-x goal-y goal-x goal-y)
(set-new-cost start-x start-y -1} ; wave-name
(set-new-cost goal-x goai-y 0) , wave-name
(pnnt ‘"done-terrain-classification)

N

(defun initial-expand()

(do ()
((setf "s-wave” (init-expand -1 (list *start-loc”))))
)
(do ()
((sett "g-wave® (init-expand O (list *goal-loc*))))
)
)

(detun imt-expand(wave-name wave)
retrun’ a-wave
(first (expand-8 (car wave) wave-name)))

(defun expand-8 (pos wave-name)
(let ((x (first pos))

{y (second pes)))
(orthog-expand (- x 1) y x y wave-name

162

(orthog-expand {(+ x 1) y x y wave-name
(orthog-expand x (+y 1) xy wave-name
(orthog-expand x (- y 1) xy wave-name
(diag-expand (- x 1) {(+y 1) xy wave-name
(diag-expand (+ x 1) (+y 1) x y wave-name
(diag-expand (+ x 1) (-y 1) xy wave-name
(diag-expand (-x 1) (-y 1) x y wave-name
(list il 0 0NN

(defun normal-expand()
(do ()
((or (expand-s-wave)
(expand-g-wave))
(print '‘wave-found))

(defun expand-s-wave()
(set-new-s-wave (cycle-thru-wave *s-wave® -1 nil)))

(detun expand-g-wave()
(set-new-g-wave (cycle-thru-wave “g-wave’ O nil}))

(defun set-new-s-wave(new-wave-data)
(setf *s-wave® (car new-wave-data))
(>= (second new-wave-data) 1))

(detun set-new-g-wave(new-wave-data)
(setf *‘g-wave" (car new-wave-data))
(>= (second new-wave-data) 1))

(detun cycle-thru-wave(wave wave-name t-wave)
(cond ((nuli wave?
(Iist t-wave O nil))
(t(let*
{(pos {car wave))
(x (first posj)
(y (second pos))
(a-parent {retneve-parent x y))
(dx (- x (first a-parent)))
(dy (- y (second a-parent)))
(wave-data (sub-expand dx dy x y wave-name t-wave))
(wave-datat
(cycle-thru-wave (cdr wave) wave-name
(add-back-to-wave pos wave-data))))
(hst (first wave-datat)

163

“‘

(+ (second wave-data1) (second wave-data))
nih)))

(defun add-back-to-wave (pos wave-data)
(if (>= (third wave-data) 3)
(first wave-data)
(cons pos (first wave-data))}))

(defun sub-expand(dx dy x y wave-name wave)
(cond ((equal dx C)

(sub-expand! (+ y dy) x y wave-name wave))

((equal dy 0)

(sub-expand2 (+ x dx) x y wave-name wave))

(t

(sub-expand3 (+ x dx) (+ y dy) x y wave-name wave)}})

(defun sub-expand1(ny x y wave-name wave)
(diag-expand (+ x 1) ny x y wave-name
(orthog-expand x ny x y wave-name
(diag-expand (- x 1) ny x y wave-name (list wave 0 0}})))

(defun sub-expand2(nx x y wave-name wave)
(diag-expand nx {- y 1) x y wave-name
(orthog-expand nx y x y wave-name
(diag-expand nx (+ y 1) x y wave-name (list wave 0 }))))

(defun sub-expana3(nx ny x y wave-name wave)
(orthog-expand nx y x y wave-name
(dvag-expand nx ny x y wave-name
(orthag-expand x ny x y wave-name (list wave 0 0)))))

(detun orthog-expand (x y px py wave-name wave-data)
(a-expand x y px py 1 4142 wave-name wave-data))

(defun diag-expand (x y px py wave-name wave-data)
(a-expand x y px py 1 wave-name wave-data))

{detun a-expand (x y px py amount wave-name wave-data)

(if (not (parent-p x y))
(set-new-parent x y px py))

{let ((cost (retrieve-cost x y)))

(cond
((and (equal cost -1)
(equal cost (other-wave-p wave-name;))

(set! ‘center-cell®

164

(list (hst x y)
(retneve-parent x y)
(list px py)))
(list (first wave-data)
(+ (second wave-data) 1)
(+ (third wave-data) 1)))
{(and (equal cost 0)
(equai cost (other-wave-p wave-name)))
(setf “center—cell®
(list (list x y)
(list px py)
(retneve-parent x y)))
(list (first wave-data)
(+ (second wave-data) 1)
(+ (third wave-data) 1)))
((and {equal {retrieve-parent x y) (list px py)) (> cost 0))
{a-expandt x y px py (- cost amount} wave-name wave-data))
(t
(list (first wave-data)
{second wave-data)
(+ (third wave-data) 1))};))

(defun a-expandi(x y px py new-cost wave-name wave-data)
(cond {(> new-cost 0)
{set-new-cost X y new-cost)
wave-data)
(t
(my-overflow x y px py new-cost wave-name
(a-expand2 x y wave-name wave-data)))))

(defun a-expand2(x y wave-name wave-data)
(set-new-Cost x y wave-name)
(list {cons (hst x y) (first wave-data))
(second wave-data)
(+ (third wave-data) 1)))

(detun other-wave-p {(wave-name)
(if (equal wave-name Q)
-1
on

(detun my-overflow ix y px py cost wave-name wave-data)

(cond ((< cost 0)
(let’ {{nx (+ x (- x px}}}
(ny (+y (-y py))
(cost! (retneve-cost nx ny))
(new-cost (+ cost cost1)))
(if (not (parent-p nx ny))
(¢ot-new-parent nx ny x y))
(cond ((and (equal (ratrieve-parent nx ny) (list x y)) (> cost! 0))
(cond ((> new-cost 0)
(set-new-cost nx ny new-cost)
wave-data)
(t
(set-new-cost nx ny wave-name)
(my-overflow
nx Ny X y New-cost wave-name
(hst (cons (list nx ny) (first wave-data))
(second wave-data)
(third wave-data))))))
(1
wave-data))
N
(t
wave-data)))

166

APPENDIX C USER INTERFACE

The user interface of any application program must be designed so that novice and
experienced users alike can effectively operate the program with little or no help from
user’s manuals or other users. This is achieved by a thorough and efficient design of
command line options, popup menus, dials, and the use of the mouse. This appendix
provides instructions on starting up aund running APS, both the vehicle simulator and

the path planner, and navigating through the menus and operating controls of the sys-

tem.

I. VEHICLE SIMULATOR?
The section covers the user interface to the vehicle simulator by descnbing

starting procedures, the menu system, and platform controls.

A. COMMAND LINE OPTIONS?
The vehicle simulator is started by typing "aps” followed by any command
line options and pressirg RETURN. There are currently three options available trom
the command line.

+ Network mode
» Test mode
« Silent mode

Selection of the network mode activates the networking capabilities of the
program. In this mode update messages are sent and received from any other vehicle
simulators as well as the path planner. Vehicle simulators operating on different

machines will be able to share information regarding the other platforms. When a

1 . . .
The main modifications to the MPS user interface are in the dnving controls, weapon system controls and addiional menu apuons.

The entire user interface 13 documented here for completeness. Where the MPS interface is unmodified, 1t 1s an extract of Appendix
A of [FICHTNES).

The code ™ :esses the command line arguments 1s contained tn the file decode_arguments ¢

167

platform fires, changes guidance mode, or changes course, speed or altitude (FOGM
only), a message i sent to all other vehicle simulators and to the AI agent updating
the local database for the appropriate platform.
Selection of test mode bypasses some of the cosmetic portions of the pro-
gram. Currently, the only part that is bypassed is the opening billboard sequence.
Selection of silent mode turns oft the bell that rings to indicate acceptance
of input from the user. This option is useful for demonstrations when the ringing

would interfere with a verbal explanation of the program.

B. POPUP MENU SYSTEM?

Popup menus are the primary source of user control over the state of the
program. There are currently 24 different popup menus that are used in various parts
of the simulation. If a selection in a menu is not allowed or meaningful when the menu
is dispiayed, the selection is displayed in lower case. Otherwise the selection is com-
pletely uppercase. Invalid selections are retained in the menu so that .he menus al-
ways appear in the same order and format every time. If disallowed selections were
omitted completely, users would tend to be overwhelmed by the number of different
menu formats.

A menu is displayed and the selection always made by depressing the
right mouse button. Roll-off menus are evopanded by moving the cursor arrow to the
right when a menu item with a roll-off submenu (such selections have a small arrow
on the right-hand side) is highlighted. The following is a detailed explanation of each

menu.

3111: code for defining all stauc popup menus 15 contained in the file makepopups.c. Code for displaving ani processing menu
sclections 1s contained in the following files: do_main.c, do_dnving_menu.c, do_flying_menu.c, do_change_speed ¢, do_intros c,
do_pathops.c, do_quitting.c, do_select_area.c, do_the_add.c, do_the_d-faultsc, do_the delete ¢, do_the_seicctc, and
select_sight.c.

168

1. Opening Menus
There are two menus that make up the opening menu set. These
menus are called OPENING_ONE and OPENING_TWO. Each of these menus con-
tain the same fous seiections as follows:

+ DISPLAY INSTRUCTIONS

+ GO TO SELECT AREA MENU

+ EXIT THE PROGRAM

+ ENTER 4SIGHT (RESIZE OPTIONS)

OPENING_ONE allows the user to select any one of these options
but OPENING_TWO disallows the first option. OPENING_TWO 1is displaved if the
user is currently looking at the instruction page.

The first selection displavs a page of instructions onthe user inter-
face. If the instruction page is being displayed or the user wishes to bypass the in-
struction page, the GO TO SELECT AREA MENU selection will do just that. To exit
the program. the user must select EXIT THE PROGRAM and a small menu will be
displayed with the following selections:

« RETURN TO WHERE YOU WERE
« REALLY QUIT

If the user desires to resize or move the simulation’s windows. the
option ENTER 4SIGHT (RESIZE OPTIONS) will allow him to accomplish it. After
selectirg the option, the windows will be cleared to white and the user can click on
the menu bar and move or resize as desired using normal window manager functions.

2. Select Area Menu

The select area menu is active whenever the 35 KM 2D map is dis-

played. It contains the “ollowing options:

+ SELECT AN AREA OF THE MAP
+ GO TOMAINMENU
* EXIT THE PROGRAM

169

« ENTER 4SIGHT (RESIZE OPTIONS)

» COLOR SCHEME - BROWN RAMP

*+ COLOR SCHEME - MULTIPLE COLORS
*+ COLOR SCHEME - GREY RAMP

+ COLOR SCHEME - RED RAMP

+ COLOR SCHEME - GREEN RAMP

+ COLOR SCHEME - BLUE RAMP

+ GO TO INTRODUCTION SCREEN

Selecting GO TO MAIN MENU will take the user to the main menu
which is the next logical place to go after selecting a 10KM area in which to operate.

The color scheme selections change the way the terrain is colored.
Each color scheme has eight different colors that are based on the elevation at that lo-
cation. The simulation actually uses 16 colors to create a checkerboarding effect. how-
ever the user is only shown the eight primary colors in the color ramp.

The last selection allows a user to return to the introduction screens
if he desires.

3. Main Menu

The main menu contains the following ten selections:

+ PLACE DEFAULT SET OF PLATFORMS
+ ADD A PLATFORM

+ DELETE A PLATFORM

* SAVEPLATFORMS TO AFILE

» SELECT A PLATFORM TO OPERATE

* ENTER 4SIGHT (RESIZE OPTIONS;

+ SELECT ANOTHER AREA OF THE MAP
* PERFORM PATH OPERATIONS

+ OBSTACLES ON/OFF =

* EXIT THE PROGRAM

Selecting the first option (PLACE DEFAULT SET OF PLAT-
FORMS) will display another menu called DEFAULT_MENU. This menu contains 6
selections as follows:

+ ENTER THE FILENAME FOR YOUR PLATFORMS
+ CONVOY - 10 GROUND PLATFORMS

+ CONVOY - 10 GROUND & ! FOGM PLATFORM
 JEEPS-20IN A ROW

+ DR.ZYDA’S CONVOY

+ DR.ZYDA’S WiLDMAN DEF*AULTS

If the user selects the first option, a small window is displayed on the
screen which prompts the user for the filename. If valid information is found in the file.
the appropriate platforms are added to the sirulation. The main menu is then redis-
plaved.

Selection of any other option on the DEFAULT_MENU results in the
aduizion of predesignated pladorms in predesignated locations. These selections are
useful for demonstration purposes and for persons interested in getting some plat-
forms on the screen very quickly.

The information for the default sets of platforms is contained in data
files that are read when indicated by a menu selection. The complete path for these

files 1s contained in the kzader file “files.h™.

The next option on the main menu is ADD A PLATFORM. Selecting

this option displays *he following menu:

* ALOD A COVERED JEEP

« ADLD AN OPEN JEEP

« ADD: TRUCK

+ ADD A TANK

+ ADD A TOW VEHICLE

+ ADD A FOGM MISSILE

« ADD AN ATTACK HELICOPTER

« ADD AN OBSTACLE

171

If a moving platform is selected (jeep, truck, tank, TOW, artack heli-
copter, or FOGM), menus are displayed requesting an initial speed and direction for
the platform. If an obstacle is requested, then the speed and direction menus are by-
passed. The FOGM missile defaults to an initial altitude of 50 meters above the ter-
rain at the point where it is placed. After completing the selections, an icon is placed
in the center of the screen that resembles the selected platform or obstacle. The user
can then move the icon with the mouse and place the platform by clicking the right
mouse button. After placing the icon on the screen, the main menu is displayed once
again.

Selecting the DELETE A PLATFORM option displays the following
menu.

« DELETE A SINGLE PLATFORM
» DELETE ALL PLATFORMS ON THE SCREEN

If the user wants to uelete one platform. an X cursor is displaved and
the user can click on the desired platform. If the user wants ro delete all the platforms
on the screen, the following menu 1s displayed:

+ NO, DO NOT DELETE ALL THE PLATFORMS
* YES, DELETE ALL PLATFORMS

The appropriate selection from this menu either cancels the operation
or executes it. This menu prevents a user from deleting vehicles that he may not real-
ly want to delete.

If the user has placed platforms on the screen and wishes to save
them to a file, then the main menu selection SAVE PLATFORMS TO A FILE accom-
plishes this. A window opens that prompts the user for the filename. If the path is cor-

rect, the platforms are saved to the file.

The next selection from the main menu is SELECT A PLATFORM
TO OPERATE. If the user selects this option, the following menu is displayed:

« ZOOMIN TO ANY LEGAL GRID SQUARE
« SELECT A PLATFORM TO OPERATE RIGHT NOW

The zoom option is usually necessary if platforms are close to each
other and the individual icons overlap. By zooming into the 1x1 kilometer grid square,
the user can more easily select the platform he desires. If the platform the user
wants to operate is clearly visible, then the second selection allows the user to select
a platform immediately.

The SELECT ANOTHER AREA OF THE MAP option returns to
the SELECT_AREA menu and redisplays the 35 KM map.

Selecting PERFORM PATH OPERATIONS from the main menu dis
plavs a submenu containing up to four path manipulation functions. These funct.ons
are:

+ DISPLAY PATHS ON/OFF =
+ CONSTRUCT PATH

+ DELETE PATH

« ASSIGN VEHICLE TO PATH

The last two options are not displayed if there are no paths to delete
or no vehicles to assign to a path. The first selection is a toggle that turns the display
of paths on the 10KM map on and off. The other selections allow manipulation of
paths. When a function is invoked by selecting it, specific instructions are displayed
in the lower right menu window.

4. Operating Menus
Operating menus are available when a platform has been selected

and is being driven by the user. They generally affect the characteristics of the 3D

terrain display or how the vehicle is being controlled.

a. Drnving Menu. This menu is called OPERATE_DRIVE. It
contains ten selections:

+ DO NOTHING

« RETURN TO MAIN MENU

+ CHANGE ALL PLATFORMS’ SPEEDS
+ EXIT THE PROGRAM

+ ENTER 4SIGHT (RESIZE OPTIONS)

+ POP WINDOWS

+ CHANGE VIEW

+ ADVANCED OPTIONS =

+ AUTOPILOT ON/OFF =

+ GUIDANCE ON/OFF =

The first selection is provided in case the user pushes the night
mouse button and he does not desire to do anything. The second selection returns the
user to the main menu.

The third selection causes another menu to pop up that allows the us-
er to select a speed for all the platforms currently in the simulation. The allowable
speeds are from zero to 65 miles per hour. There is also a selection that will do noth-
ing and return directly to the simulation. Changing all the speeds is convenient when
the user wants to have a convoy of platforms proceed at identical speeds. Also, by se-
lecting zero miles per hour, all platforms are effectively frozen and their configuration
can be studied by viewing them from a FOGM missile or other platform,

The POP WINDOWS selection brings the four windows of the simu-
lation into view if any of them are obscured from view by other processes that are run-
ning on the machine.

If the CHANGE VIEW option is selected, a submenu containing dif-
ferent operating modes 1s presented. All platforms have at l¢ast three options:

+ NORMAL VIEW - Normal commander’s view, all dials including course and
speed are active.

174

+ DRIVER’S STATION - Activates mouse joystick (Figure C-1). for driving the
platform. In this mode moving the mouse move the steering cursor which
controls the steering and throtutle. The corresponding course and speed di-
als are deactivated.

+ BINOCULARS - Gives view through a pair of variable power binoculars.

An additional selection is presented for each weapon system type
and munition combination carried by the platform, i.e., for a TOW vehicle a TOW se-
lection is displayed along with the normal three views.

The ADVANCED COPTIONS selection brings up the following meru:

+ TOGGLE SINGLE/DOUBLE BUFFER MODE
*+ TARGETING MODE TEST (ONCE)
« TERRAIN DRAWING OPTIONS

The first selection toggles the graphics hardware between single-
buffer and doublebuffer modes. In doublebuffer mode. all drawing is done in a separate
area of memory from the display memory. When the functon swapbutiers() is called,
the pointer to this area and the pointer to the display buffer are switched. thereby
swapping the new picture for the old picture. This is how smocth motion is simulated.
If a user is interested in what order the individual picture elements are drawn on the
screen, then by selecting singlebuffer mode, he can see the pictures while they are be-

ing drawn.

ACCELERATE

TURN LEFT TURN RIGHT

BRAKE

Figure C-1 Mouse Steering Cursor

175

Targeting mode test allows a user to see how the simulation deter-
mines if a target is in the crosshairs of the FOGM missile during targeting. After se-
lecting the option, the next time targeting is attempted, the view will be cleared to
white and all visible platforms will be drawn without lighting, shading, or hidden sur-
face removal. The resulting picture is displayed for three seconds and then normal op-
eration commences. This option is reset each time it is used.

The TERRAIN DRAWING OPTIONS option is a roll-off menu.
When the user moves the cursor towards the right side of the words TERRATN
DRAWING OPTIONS, tiie following menu is displayed:

+ DETAILEL =RRAIN
+ DISTANCE ATTENUATION - NORMAL
« DISTANCE ATTENUATION - BOUNDARIES DISPLAYED

The default terrain drawing option is DISTANCE ATTENUATION -
NORMAL. This drawing option establishes three zones in front of the driven platform
and reduces the number of polvgons that are displaved in each zone. The zone closest
to the viewer is displaved with 100x100 meter polvgons, the greatest resolution avail-
able. The next zone uses 200x200 meter polvgons and the last zone uses 400x300
meter polygons. The selection DISTANCE ATTENUATION - BOUNDARIES DIS-
PLAYED draws the boundaries between z~nes in cyan so the user can see where
they are. The selection for DETAILED TERRAIN draws 100x100 meter polvgons
throughout the three zones. Users notice a significant decrea.- in the frames per sec-
ond rate when this option is selected. If singlebuffer mode is also enabled during de-
tailed terrain drawing, the algorithm that is used to draw the terrain becomes more
obvious.

The GUIDANCE ON/OFF toggles the guidance mode of the current-
ly selected platform. It invokes the actions described in paragraph C of chapter three.
A indicator light in the upper right window is also toggled to reflect the current guid-

ance mode.

176

The AUTOPILOT ON/OFF option works much the same. It toggles
the platform’s autopilot and its indicator light on and off.

b. Flying. There are three menus that make up the flying menu
set. These menus are called OPERATE_FLY_ONE, OPERATE_FLY_TWO, and
OPERATE_FLY _THREE. This menu contains the seven selections as follows:

+ DO NOTHING

+ DETACH/RESUME OPERATING

« RETURN TO MAIN MENU

« CHANGE ALL PLATFORMS’ SPEEDS
+ EXIT THE PROGRAM

« ENTER 4SIGHT (RESIZE OPTIONS)

+ TOGGLE TARGET TRACKING

+ ADVANCED OPTIONS

Many of these options are exact duplicates of the options on the driv-
ing menu. However, the DETACH/RESUME OPERATING and TOGGLE TARGET
TRACKING options are different.

The DETACH/RESUME OPERATING option allows a user to de-
tach the cursor from the simulation while flying. During flving, the cursor is restricted
to the simulation window because the mouse controls where the nose camera of the
FOGM missile is pointed. Using this option. the user can point the camera where he
wants to look and then free the mouse. To return to the simulation. the user must se-
lect the same option once again.

If the user has a ground platform in the crosshairs of the FOGM mis
sile and he wants to target it, he must make the TOGGLE TARGET TRACKING se-
lection from the menu. If a pladorm was in the crosshairs, then the missile will lock on

and track the platform. If the user wants to release the missile from tracking mode

then another selection will turn off target tracking.

C. DIALS?

The dial box that is supplied by SGI has eight dials numbered from zero to
seven. They are organized in two columns and four rows. The numbering scheme is
from left to right, bottom to top so the lower left dial is zero, the lower right is one and
the upper right is seven.

The Autonomous Platform Simulator uses these dials in basically three
configurations; one for driving a platform that has no weapon system, a second for
driving a weapon equipped platform and a third for flying the FOGM. When the vehi-
cle i being driven using the mouse joystick, the course and speed dials are inactive.
When looking through the weapon sight « { a platform dials one and three affect the az-
imuth and elevation respectfully of the weapon system. When in normal view mode
dials six and seven perform this function and the weapon is controlled independently
of vehicle course or viewing angle.

1. Driving Dial Configuration

The dials for driving (Figure C-2) are configured as follows:

+ DIAL O - Course

+ DIAL 1 - Viewing direction or weapon azimuth if a sight is active
+ DIAL 2 - Speed

+ DIAL 3 - Viewing elevation or weapon elevation if a sight is active
+ DIAL 4 - Hour of the day

« DIAL S - Month of the year

« DIAL 6 - Traverse weapon system when not looking through sight
+ DIAL 7 - Elevate weapon system when not looking through sight

The course is the direction of travel of the platform which is displayed
in degrees. The viewing direction is the direction the driver’s head is looking left to
right in relation to the course. When the course is changed, the viewing angle changes

accordingly. Speed is the speed of the platform in miles per hour. View elevation

4’1?1: code for titializing the dials 15 contained 1n the following files: setcontrols.c and setcontrols_fogm.c Code for handling input

from the diais’ movements 1s contained in the following files. handlecontrols ¢, handlecontrols_fogm.c. and handlecontrols_parual ¢

178

moves the driver’s view up and down. The hour of the day and month of the year de-
termine the location, color, and intensity of the sun. Figure C-2 is a picture of the dial
box with the dials labeled for driving.
2. Flying Dial Configuration
The dials for flying are configured as follows:

+ DIAL O - Course

+ DIAL 1 - Altitude

+ DIAL 2 - Speed

« DIAL 3 - Not Used

+ DIAL 4 - Hour of the Day

« DIAL 5 - Month of the Year

« DIAL 6 - Not Used
« DIAL 7 - Not Used

Many of the dials are identical to the driving dial configuration except for al-
utude which is self-explanatory. Figure C-2 is a picture of the dial box with the dials

labeled for flying.

D. Mouse’

The mouse has many uses throughout the simulation. Its use can be bro-
ken down into basically six groups:

+ Popup menu activation and selection
» Operating area selection

+ Platform icon placement and selection
+ FOGM missile nose camera control

* Mouse joystick driving control

+ Weapon rangefinder and firing controls

5Codc tor handiing the operauons of the selections 1g contained 1n the file select_area_menu.c. Code for handhing platform 1con

placement 1s contained n the files do_the_add ¢ and addveh.c. Code for dnving using the mouse as a jovstick 1s contained in
sctup_for_dnving ¢ Zode for handling FOGM mussile nuse camera controd 15 contained in th~ files handlecontrois_fogm o and

handleconirels_partial o

179

TURRET GUN

5

HOUR MONTH

SPEED

COURSE VIEWING DIR

Figure C-2 Dial Box With Dials L.abeled For Driving

180

>

HOUR MONTH

SPEED

COURSE ALTITUDE

Figure C-3 Dial Box With Dials Labeled For Flying

181

When operating a platform using the dials or mouse joysuck the left and
middle mouse buttons control the magnification of the view by zooming OUT or IN re-
spectively as shown in Figure C-4. When looking through the sight of a weapon sys-
tem the left and middle mouse buttons function as a rangerfinder and trigger. This
arrangement 1s shown in Figure C-5.

The mouse is used throughcut the simulation to activate popup menus and to se-
lect options. One of these options is to select an area from the large database. A
10x10 kilometer red square is displayed on the 35x35 kilometer database and the
mouse 1s used to move the square to the desired location. Platforms are placed and
selected on the screen with the mouse.

The nose camera of the FOGM missile 1s controlled with the movement of the

mouse. This gives ihe user very fine control over targeting and viewing direction.

E. Kevboard®
The kevboard is only used to accept filenames from the user. All other user

input 1s through e POpup menus, dials, or mouse.

Cidde forhandhing fiiename irput s cntained in the files get_name ¢ and do _char ¢

‘ it go@
Cz- gooﬂ
(s

Figure C-4 Mouse Button Assignments - Normal View

[~enc)

F
I
R
E

Figure C-5 Mouse Button Assignments - Weapon Sight

II. PATH PLANNER
The path planner portion of APS is not a stand alone process, it requires the ve-
hicle simulator tc be running. This section covers how to run the path planner portion

of the vehicle simulator by describing starting and stopping procedures.

A. INITIAL REQUIREMENTS
The path planner requires that seven files be loaded across two Symbolics
workstations. The following files are required on SYM4, where ART resides.

e pp-control.art

+ insflavor3.lisp

» chaosflavor.lisp

+ comm-functions.lisp

+ clock-functions.lisp

+ def-interface lisp
The above files do not have to be loaded to begin with, but must be available for file
access. The following files are required on another Symbolics workstation.

+ big-slope.bin

» search-control.lisp

» chaosflavor.lisp

« comm-functions.lisp

* Ir-wave.lisp
B. START PROCEDURES
The path planner requires several preconditions to run properly. Since the
path planner is not a stand alone program, APS must be brought up first in network
mode. The path planner may be started anytime after APS has passed the initial
screen display. Starting the path planner is divided into two sections. These sections

are starting the path planner control program, and starting the search control program.

184

1. Starting the Path Planner Control Program
On SYM4, enter ART by typing the SELECT: button. then tvping A.
Load pp-control.art in the ART shell. Reset ART by clicking the left mouse button on
reset. Left mouse click on run. The program will query the user as to which Symbolics
workstation the search algorithm is loaded. After ensuring that the search control pro-
gram is started on the other Symbolics workstation, select the appropriate letter. The
program will then query the user as to which IRIS graphics workstation the vehicle
simulation is running on. After ensuring that the simulation is already running in the
network mode, select the appropriate letter from the menu. The path planner is now
running on its own and needs no further user interaction.
2. Starting the Search Control Program
The search control program is loaded onto any Symbolics worksta-
tion. cther than SYM4 where the path planner control program is loaded. To start the
search program. load search-contollisp. Then in the LISP listener enter (start-
search-control). The program will respond by loading il of its commurnications and
search files, then initiate a wait for communications from the path planner control pro-

gram on SYM4. No further user inieraction is required.

C. STOPPING THE PATH PLANNER
When the user is finished with the path planner. it is halted by using the
META. CONTROL. and ABORT keys simultaneously. Next, on SYM4. the user en-
ters the dynamic LISP listener and sets the user package to ACU (ART Common Us-
er), and clears the communications paths by entering the following:

* (sclisend talk-i :stop-iris)
s (scl:send talk-s :stop)

The search control program is halted in an identical manner as the path planner
control program, but there is no need to enter a special LISP package to clear the com-
munications path. The communications path for the search control program is cleared

by entering (send talk-s :stop).

185

APPENDIX D KNOWN BUGS and SUGGESTED CODE IMPROVEMENTS

1. The timer is currently reset when a vehicle is selected/reselected to operate
from the main menu. This causes errors in timed events on the event list such as
rounds in flight, safety reset, etc..

2. The Cobra attack helicopter is controlied the same as a ground vehicle.

3. Guidance for LOS guided weapons, specifically the TOW, uses the curreat
weapon azimuth and elevation, not the parameters at the moment of firing like a bal-
listic round. This is correct but still fails to move the round onto the LOS at the
crosshairs of the sight reticle. In check_round_In_tlight(), the round should be moved
to its new updated position by moving towards the currenr point of aim while being
kept within the turning limits of the missile control system.

4. A separate eye position should be added to provide additional viewpoints on
each vehicle. Each vehicle should have ¢ eve position for: normal view (TC). driver’s

view, and wearon view. This should be accomplished bv adding the following data

structure:
#define TC_FOSITION 0
#define DRIVER_POSITION 1
#define WEAPON_POSITION 2

tioat eye_position[vehtype][view_position][x,y,z]

5. The FOGM controls no longer work correctly. The pan direction is reversed
and the course is fixed at 90 degrees.

6. The network(SEND_END_MESSAGE) function causes remote simulators to
crash. Since net ids are now unique, the range of ids can no longer be calculated.
Therefore, the terminating simulator must send a delete me<cage for each of its local
platforms when terminating.

7. In some cases, the autopilot will cause a platform to endlessly orbit the

goal. Normally a platform approaches a guide point head-on and stops or tums. If

186

e ————————————————————

the vehicle is outcide the stopping distance and facing away from the goal when the
autopilot is engaged, then the vehicle can get into a situation where it passes by the
guide point before it completes its turn to head for it. This results in a circular path
around the guide point. Thic should be taken care of when the autopilot is made more
accurate to handle obstacle avoidance.

8. The display limiting algorithm in drawterrain doesn’t work properly for the
extremely narrow field-of-view used for the 13X TOW sight. At certain angles not
enough terrain is drawn so some blue sky background shows through.

9. Calculating surface normals for 100 squares across and up requires 101 ele-
vation data points. The 101st elevation doesn’t exist. resulting in bad normals along
the top row and right column. This was fixed temporarily by extending the 106th ele-
vation out to also be the 101st elevation which creates a light band of terrain in these
border areas. The algorithm should be changed to cither get the 101st elevation or
extrapolate it based on 99th and 100th elevations.

10. All matching of platform ids is done by linear search through the plaiform
list. This s not a problem with only a handful of vehicles, but would cause serious de-
lays for a more realistic number of platforms. This should be replaced by a hash table

using platform id.

187

LIST OF REFERENCES

[BARROW&88] Barrow, Theodore H., Yurchak, John M. Zvda, Michael. J,,
Distributed Computer Communications in Support of Real-Time Visual
Simulations, Technical Report, Naval Postgraduate School, Monterey,
California, September 1988

[BIHARI&39] Bihari, Thomas E., Walliser, Thomas M., and Patterson, Mark
R., “Controlling the Adaptive Suspension Vehicle”, I[EEE Computer, pp 59-65,
June 1989.

[DODSCI83] U. S. Department of Defense Advanced Research Projects

Agency, Strategic Computing: New-Generation Computing Technology: A
Strategic Plan for Iis Develpement and Applications to Critical Problems in
Defense, DARPA Washington DC, 23 October 1983

[FELHOES§9] Felhoelter, Dennis G., A Graphics Facility for Integration,
Editing, and Display of Slope. Curvature, and Contours From a Digital Terrain

Elevarion Database, M.S. Thesis, Naval Postgraduate School, Monterey,
California, June 1988.

[FEYNMNG63] Feynman Richard P., Leighton. Robert B.. and Sand, Michael.
Lectures on Physiscs, v. 1. California Institute of Technology, 1963.
[FICHTN&S88] Fichten, Mark A., Jennings, David H., Meaningful Real-Time

Graphics Workstation Performance Measurements. N.S. Thesis. Naval
Postgraduate School, Monterey, California, November 1988.

[FRANK&69] Frank, A. A., and McGhee, Robert B., “Some Considerations
Relating to the Design of Autopilots for Legged Vehicles”. Journal of
Terramechanics. v.6, n.1, pp 23-35, 1969.

[FU&87] Fu, K.S., Gonrzales. R. C., Lee. C. S. G.. Robotics: Control.
Sensing, Vision, and Intelligence, McGraw-Hill Book Company, 1987.
[GOODPAS~] Goodpasture. Richard P., A Computer Simulation Study of an

Expert System For Walking Machine Motion Planning, M.S. Thesis, Naval
Postgraduate School, Monterey, California, December 1987.

[HEARN& 86] Hearn, Donald and Baker, M. Pauline, Computer Graphics,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1986.
[INFRNCS85] Inference Corporation, ART Reference Manual, Los Angeles,

California, 1985.

188

[INTELS6] IntelliCorp, KEE Software Development System User's Manual,
version 3.0, Mountain View, California, 1936.

[JANESS87] Jane’s Publishing Company Ltd., Armour and Aruiiery 86-87,
London, England, 1987.

[KUANS4] Kuan, D. T, “Terrzin Map Knowledge Representauon for
Spatial Planning”, Proceedings of the IEEE Computer Security Conference on

. Autonomous Vehicle Applications, 1984,
[KWAK&S88] Kwak, Sehung. and McGhee, Robert. B., Rule-based Motion

Coordination for the Adaprive Suspension Vehicle, Technical Report, Naval
Postgraduate School, Monterey, California, May 1988.

[LOWRIES6] Lowrie, J., The Autonomous Land Vehicle Program. Martin
Marietta, Denver Aerospace, Denver, Colorado, December 1985.

[MARION70] Marion. Jerry B., Classical Dynamics of Par:icles and Systems.
Academic Press. College Park, Maryland. 1970.

[METEA&S87] Metea, M. B., and Tsai,], "Route Planning for Intcliigent

Autonomous Land Vehicles Using Hiesarchical Terrain Representatuon”,
Proceedings of the [EEE Conference on Robotics and Automation, 1987.

[MCNKLE&S88] McConkle, Corinne and Nelson, Andrew H.. A Proronpe
Simulation System for Combar Vehicle Coordination and Motion Visualization.
MLS. Thesis, Naval Po. tgraduate School. Monterey, California, June 1988.

[MUNSONS89] Munson, Steven, [ntegrated Support for Manipulation and
Display of 3D Objects for the Command and Cantrol Workstazion of the Future,
M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1989.

INITAOKSS] Nitao, John J. and Parodi, Alexander M., "A Real-Time
Reflexive Pilot for an Autonomous Land Vehicle™, IEEE Control Svstems
Magazine, pp 14-23, Febuary ¢.

[INIZOLK &89] Nizolak, Joseph, P. Jr,, and Drummon, William T., A Graphics
Workstation Field Artillery Forward Observer Simulator Trainer, M.S. Thesis,
Naval Postgraduate School, Monterey, California, June 1989.

[OLIVER&87] Oliver, Michael R., and Stahl, David J., Interactive, Nerworked.
Moving Platform Simulators, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1987.

[RESNCK&67] Resnick, Robert, and Halliday, David, Physics. Part I, John
Wiley & Sons, Inc., 1967.

189

MRICHBG&87] Richbourg, R. E., Rowe, N. C., Zvda, M. J., and McGhee, R. B,
“Solving Global, Two-Dimensional Routing Problems Using Snell’s Law and
A* Search”, Proceedings of the I[EEE [nternational Conference on Robotics and
Automation, April 1987,

(RICHBGS87] Richbourg, R. F., Solving a Class of Spatial Reasoning Problems:
Minimal-Cost Path Planning in the Cartesian Plane, Doctoral Thesis, Naval
Postgraduate School, Monterey, California, June 1987.

[ROSS8y) Ross, R. 5., Fianning Mininwmn-Energy Paihs in an Cff-Road
Environment With Anisotropic Traversal Costs and Motion Constraints,
Doctoral Thesis, Naval Postgraduate School, Monterey, California, June 1989.

TROWES7] Rowe, Neil C., Roads, Rivers, and Rocks' Onrtimal Two-
Dimensional Route Planning Around Linear Features for a Mobile Agent,
Technical Report., Naval Postgraduate School, Monterey, California, June 1987.

[ROWE&88] Rowe, Neil C. and Ross, Ron S., Optimal Grid-free Path
Planning Across Arbitrarily-Contoured Terrain With Anisotropic Friction and

Graviry Effects, Technical Report, Naval Postgraduate School, Monterey,
California, November 1988.

[RCWESSB] Rowe. N. C.. Artificial Intelligence Throuoh Prolog, Prentice-
Hall, Inc, 1988.

[SGITUGS7] Silicon Graphics Inc., IRIS User's Guide, v. 1, Mountain View,
Califoiaia, 1987.

([SGI4AUGSS] Silicon Graphics Inc.. 4Sight User's Guide. v. 1. Mountain View,

California, 1988.

[SMITHD&87] Smith., Douglas B.. and Strevle. Dale G.. An [nexpensive Real-
Time [Interactive Three-Dimensional Flight Simulation Svstem., M.S. Thesis.
Naval Postgraduate School, Monterey, California, June 1987.

[SYMBOLSS] Symbolics, Inc., Symbolics Reference Manuals, Cambridge
Massachusetts, 1988.

[TANSG6] Tan, Chaim Huat, A Simulation Swudy of An Auwtonomous
Steering Svstem jor On-Road Operation of Autonomous Vehicles, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1986.

[WEISBN&89] Weisbin, C. R., and others, ‘“Autonomcus Mobile Robot
Navigation and Leamning™, IEEE Computer, pp 29-35, June 1989.

190

[WINN&89] Winn, Michael C., and Strong, Randolph P., The Moving
Platform Simulator 1. A Nerworked Real-Time Simulator With Intervisibility
Displuvs, M.S. Thesis, Naval Postgraduate School, Monterev. Cualifornia, June
1989.

[ZYDA &88] Zyda, Michael J., and others, “Flight Simulators for Under
$100,000”, IEEE Compuier Graphics and Applications, pp19-27, January 1988.

-«

b9

(S

[

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey. CA 93943-5002

Dr. Robert B. McGhee

Naval Postgraduate School

Code 52, Department of Computer Science
Monterey, CA 93943-5100

Dr. Michael J. Zyda

Naval Postgraduate School

Code 52Mz, Department of Computer Science
Monterev, CA 93943-5100

Maj. William A. Teter
2 Mervine Street
Monterey. CA 93940

Cpt. Larry R. Shannon
Star Route
Entiate, WA 98801

N P ~nDaar
ta J--/A-_—‘“A.
United States Army Intelligence Center and School
Attention: Scientific Advisor

Fort Huachuca, AZ 85613

U.S. Army Al Center

HQDA, DCSA, DSMA
ATTN:CSDS-AI(MAJ TETER)
Pentagon, RM 1D659

Wash, DC 20310-0200

192

ta

19

to

[]

1393

10.

Commandant of the Marine Corps
Code TE 06

Headquarters, United States Marine Corps
Washington, D.C. 20380-0001

Mr. Mike Tedeschi
United States Army Combat Developments Experimentation Center
Attention: ATEC-D
Fort Ord, CA 93941

Inforination Technoiogy. Code 037

Naval Postgraduate School
Monterev, CA 939432 5100

193

t9

tJ

